David Wildt's cheetah (Acinonyx jubatus) research from 1978-1983 became the foundation for the use of embryological techniques in endangered species breeding programs. The cheetah is a member of the cat family (Felidae), which includes thirty-seven species. According to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) all Felidae species are currently threatened or endangered, with the exception of the domestic cat (Felinus catus). Cheetahs are an internationally recognized charismatic megafauna species, prized zoo specimens, difficult to breed, and the basis of many conservation campaigns. Like most species, cheetahs have not traditionally been studied; only a few "model" organisms have been thoroughly researched in a laboratory setting. This research revealed that the difficulty observed in breeding cheetahs in captivity is due to their lack of genetic diversity.

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation. In this experiment Waddington was, in fact, able to induce neural differentiation. Waddington noted that the tissue is "competent"; for a chick organizer, and by deduction a mammalian organizer must exist. Competence refers to a cell's ability to respond to an inducing signal, which is temporally limited to certain developmental stages. Waddington's initial work laid the foundation for many decades of research to follow, including further experiments by Waddington with the mammalian organizer.

Subscribe to Experiment