John Craig Venter helped map the genomes of humans, fruitflies, and other organisms in the US in the late 1990s and early 2000s, and he helped develop an organism with a synthetic genome. In February 2001, Venter and his team published a human genome sequence after using a technique known as Expressed Sequence Tags, or ESTs. Venter worked to bridge commercial investment with scientific research. Venter founded a number of private companies, including the for-profit Celera Genomics, headquartered in Alameda, California, as well as research institutes, such as the not-for-profit J. Craig Venter Institute, located in Rockville, Maryland, and La Jolla, California.
Gordon Watkins Douglas researched cervical cancer, breach delivery, and treatment of high blood pressure during pregnancy in the US during the twentieth century. He worked primarily at Bellevue Hospital Center in New York, New York. While at Bellevue, he worked with William E. Studdiford to develop treatments for women who contracted infections as a result of illegal abortions performed throughout the US in unsterile environments. Douglas also established the first contraception and pregnancy termination clinic at Bellevue Hospital shortly after the legalization of abortion as a result of the 1973 US Supreme Court ruling in Roe v. Wade. Furthermore, Douglas showed that fetal and maternal cells exchange between the pregnant woman and fetus during pregnancy, which led to the later development of non-invasive prenatal testing in the early twenty-first century.
Francois Jacob studied in bacteria and bacteriophages at the Institut Pasteur in Paris, France, in the second half of the twentieth century. In 1965, Jacob won the Nobel Prize in Physiology or Medicine with Andre M. Lwoff and Jacques L. Monod for their work on the genetic control of enzyme synthesis. Jacob studied how genes control and regulate metabolic enzymes in the bacterium Escherichia coli (E. coli) and in lysogenic bacterial systems. He contributed to theories of transcriptional gene regulation, the operon model, and the distinction between structural and regulatory genes. Jacob also introduced the concept of bricolage (tinkering) in evolutionary biology.
Nikolai Ivanovich Vavilov proposed theories of plant genetic diversity and participated in the political debate about genetics in Soviet Russia in the early twentieth century. Vavilov collected plant species around the world, building one of the first and most comprehensive seed banks, and he spent much of his life researching plant breeding and genetics. Vavilov also developed a theory of the historical centers of origin of cultivated plants. Vavilov spent most of his scientific career in Russia, although he studied abroad and traveled extensively. The ascent of geneticist Trofim Lysenko, favored by Joseph Stalin, and Vavilov's public criticism of him lead to Vavilov's arrest in 1940 and his death in prison three years later.
Keith Henry Stockman Campbell studied embryo growth and cell differentiation during the twentieth and twenty-first centuries in the UK. In 1995, Campbell and his scientific team used cells grown and differentiated in a laboratory to clone sheep for the first time. They named these two sheep Megan and Morag. Campbell and his team also cloned a sheep from adult cells in 1996, which they named Dolly. Dolly was the first mammal cloned from specialized adult (somatic) cells with the technique of somatic cell nuclear transfer (SCNT). Campbell helped develop cloning techniques that used a common form of connective tissue cells (fibroblasts). Besides working at the Roslin Institute, in Edinburgh, Scotland, for most of his career, Campbell also taught at the University of Nottingham in Nottingham, England.
Walter Stanborough Sutton studied grasshoppers and connected the phenomena of meiosis, segregation, and independent assortment with the chromosomal theory of inheritance in the early twentieth century in the US. Sutton researched chromosomes, then called inheritance mechanisms. He confirmed a theory of Wilhelm Roux, who studied embryos in Breslau, Germany, in the late 1880s, who had argued that chromosomes and heredity were linked. Theodor Boveri, working in Munich, Germany, independently reached similar conclusions about heredity as Sutton. Later scientists named the theory The Sutton-Boveri Theory, or The chromosomal theory of inheritance.
Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of development. Keibel used these illustrations, which he and others in the scientific community called normal plates, to describe the development of organisms in several species of vertebrates. His illustrations are published in the sixteen-volume text Normentafeln zur Entwicklungsgeschichte der Wirbelthiere (Normal Plates of the Developmental history of Vertebrates), published in 1895, and in the Manual of Human Embryology, which he edited with Franklin Paine Mall of the US, published in 1912. Keibel's plates showed human embryos in different stages of development between the twelfth day and the second month after fertilization.
Barbara McClintock worked on genetics in corn (maize) plants and spent most of her life conducting research at the Cold Spring Harbor Laboratory in Laurel Hollow, New York. McClintock's research focused on reproduction and mutations in maize, and described the phenomenon of genetic crossover in chromosomes. Through her maize mutation experiments, McClintock observed transposons, or mobile elements of genes within the chromosome, which jump around the genome. McClintock received the Nobel Prize for Physiology or Medicine in 1983 for her research on chromosome transposition. McClintock's work helped explain the behavior of chromosomes in organismal development and identified transposition as a cause of genetic variation.
In 2004, the South Korean geneticist Woo-Suk Hwang published what was widely regarded as the most important research finding in biotechnology that year. In the prestigious American journal Science, he claimed that he had succeeded in cloning a human blastocyst, which is an embryo in its early developmental stages (Hwang et al. 2004). A year later, in a second Science article, he made the earth-shattering announcement that he had derived eleven embryonic stem cell lines using his cloning technique (Hwang et al. 2005). The international scientific community was stunned. American scientists publicly fretted that President George W. Bush‘s executive order in 2001 which limited federal funding for stem-cell research in the United States had put American bioscience behind the Koreans’ (Paarlberg 2005).
Elinor Catherine Hamlin founded and helped fund centers in Ethiopia to treat women affected by fistulas from obstetric complications. Obstetric fistulas develop in women who experience prolonged labor, as the pressure placed on the pelvis by the fetus during labor causes a hole, or fistula, to form between the vagina and the bladder (vesicovaginal fistula) or between the vagina and the rectum (rectovaginal fistula). Both of those conditions result in urinary or fecal incontinence, which often impacts womenÍs social status within their communities. Hamlin co-founded a hospital to treat fistulas and help fund health clinics, a rehabilitation center, and a midwife school. Her work in Ethiopia helped to help train the next cohort of midwives to treat women with obstetric complications and has contributed to the health and social well-being of Ethiopian women.