Maternal consumption of alcohol (ethanol) can result in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The eye and ocular system development is particularly susceptible to the effects of prenatal alcohol exposure and can result in visual impairment or blindness.

Parasitic twins, a specific type of conjoined twins, occurs when one twin ceases development during gestation and becomes vestigial to the fully formed dominant twin, called the autositic twin. The underdeveloped twin is called parasitic because it is only partially formed, is not functional, or is wholly dependent on the autositic twin. In most cases, the phenotype of parasitic twins is one normal functioning individual with extra appendages or organs, leading to questions about whether or not the additional limbs and organs are in fact another person or just a mutation of the individual's body. Researchers think that parasitic twins result from mechanisms similar to those that produce Vanishing Twin Syndrome. On a developmental continuum with vanishing twin syndrome on one end and developmentally normal twins on the other, researchers propose that the patterns of conjoined twins fall in the middle.

Prenatal exposure to alcohol (ethanol) in human and animal models results in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The basal ganglia, one of the central nervous system components, are affected by exposure to ethanol during development. When exposed to alcohol in utero, the basal ganglia decrease in size resulting in poor motor coordination and defects in executive functioning.

The most-watched NOVA documentary ever made and a revolution in the understanding of human development, The Miracle of Life (abbreviated Life) employs the most current developments in endoscopic and microscopic technology to capture the intricacies of human development. Narrated by Anita Sangiolo and vividly illustrating the most minute and hard-to-reach parts and processes of living systems, this film truly flexes the muscles of the newest photographic technology of its time, with esteemed photographer Lennart Nilsson behind the camera. Aired in 1983, Life was the first documentary of its kind, clearly explaining, in under an hour, biological systems that many people had never seen before. The film was written and produced by Bebe Nixon and directed by Bo G. Erikson. What follows is a description of the film, along with a brief analysis of its impact.

Life Magazine's 1965 cover story "Drama of Life Before Birth" featured photographs of embryos and fetuses taken by Swedish photojournalist Lennart Nilsson to document the developmental stages of a human embryo. Included in this article was the first published image of a living fetus inside its mother's womb. Prior to this, embryos and fetuses were observed, studied, and photographed outside of women's bodies as non-living specimens. Laparoscopic photography and sophisticated technology contributed to the capturing of these images, which appeared to represent living embryos and fetuses in womb-like environments.

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading fetal alcohol spectrum disorders (FASD). Fetal alcohol syndrome (FAS) is the most severe combination of these defects under this heading, and is characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system (CNS). The developing brain is particularly vulnerable to the toxicity of ethanol, given the broad time frame of susceptibility from neurulation, when the neural tube is formed, all the way through to birth. The cerebellum is an area of the brain particularly vulnerable to prenatal ethanol exposure. Mechanisms proposed for this drastic reduction in brain cells include apoptosis, oxidative stress, and damage to the radial glia stem cell progenitor pool. Physical dexterity, coordination, and visuospatial processing are all affected by these stressors, and eyeblink classical conditioning tests have proven that ethanol-induced damage goes beyond motor coordination by permanently impacting learning and memory.

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system. The pattern of facial defects that occur as a result of ethanol exposure during development primarily affects the midline of the face, altering morphology of the eyes, nose, and lips. Ethanol damage to cranial neural crest cells (CNCC) early in embryonic development is responsible for these minor midline abnormalities. Regulation of the gene sonic hedgehog (shh) during this period of development has been observed to rescue these ethanol-affected CNCC from fated cell death, an association that has not yet been examined as it applies to human cells.

After becoming chief pathologist at the University of Wisconsin-Madison Wisconsin Regional Primate Center in 1995, James A. Thomson began his pioneering work in deriving embryonic stem cells from isolated embryos. That same year, Thomson published his first paper, "Isolation of a Primate Embryonic Stem Cell Line," in Proceedings of the National Academy of Sciences of the United States of America, detailing the first derivation of primate embryonic stem cells. In the following years, Thomson and his team of scientists - Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A. Waknitz, Jennifer J. Swiergiel, Vivienne S. Marshall, and Jeffry M. Jones - advanced their work with embryonic stem cells, eventually isolating and culturing human embryonic stem cells. Their work with human embryos was reported in the 1998 Nature article "Embryonic Stem Cell Lines Derived from Human Blastocysts."

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain. The domain responsible for the regulation of transcription is the DNA binding domain, which binds to DNA sequences called estrogen-responsive elements (EREs), found in enhancer regions of specific genes. By the binding of estrogen or an estrogen mimic to these enhancers, the target genes become activated and the proteins produced are involved in numerous cellular processes. With an estrogen mimic or xenoestrogen, such as diethylstilbestrol (DES), the negative regulation of certain genes during embryonic development can be devastating to the developing anatomy, especially the reproductive system.

On 9 August 2001, US President George W. Bush gave an eleven-minute speech from his ranch in Crawford, Texas, on the ethics and fate of federal funding for stem cell research. Bush also announced the creation of a special council to oversee stem cell research. In the speech President Bush acknowledged the importance of issues surrounding stem cell research to many Americans, presented different arguments in favor of and opposing embryonic stem cell research, and explained his decision to limit but not completely eliminate potential federal funding for embryonic stem cell (ESC) research. The speech was important to embryology as a field because it determined the US government's policy on funding human ESC research for the eight years of George W. Bush's administration.

Subscribe to Human Development