Embryonic images displayed in Life magazine during the mid-twentieth century serve as a representation of technological advances and the growing public interest in the stages of embryological development. These black-and-white photographs portray skeletal structures and intact bodies of chicken embryos and human embryos and fetuses obtained from collections belonging to universities and medical institutions.

Bisphenol A (BPA) is an organic compound that was first synthesized by Aleksandr Dianin, a Russian chemist from St. Petersburg, in 1891. The chemical nomenclature of BPA is 2,2-bis (4-hydroxyphenyl) propane. The significance of this synthesized compound did not receive much attention until 1936, when two biochemists interested in endocrinology, Edward Dodds and William Lawson, discovered its ability to act as an estrogen agonist in ovariectomized, estrogen-deficient rats. Biochemists and endocrinologists found the results of Dodd and Lawson's experiment to be particularly important because at that early stage of research into hormones, it was still difficult to isolate naturally occurring hormones. Since then, BPA has proven to have complex developmental effects, but it has taken many researchers to sort out the details.

Twin-to-Twin Transfusion Syndrome (TTTS) is a rare placental disease that can occur at any time during pregnancy involving identical twins. TTTS occurs when there is an unequal distribution of placental blood vessels between fetuses, which leads to a disproportionate supply of blood delivered. This unequal allocation of blood leads to developmental problems in both fetuses that can range in severity depending on the type, direction, and number of interconnected blood vessels.

In humans, multi-fetal pregnancy occurs when a mother carries more than one fetus during the pregnancy. The most common multi-fetal pregnancy is twins, but mothers have given birth to up to eight children (octuplets) from a single pregnancy. Multiple fetusus can result from the release of multiple eggs or multiple ovulations, the splitting of a single fertilized egg, and fertility treatments such as in vitro fertilization (IVF) which involves the insertion of many fertilized eggs into the mother's uterus. The specific ways that multiples are conceived determines the degree of relatedness between individuals within the set. Once conceived, there are many possibilities for arrangement of placentas, where the egg implants, and amniotic sacs. The detection of multiple fetuses can be made by using ultrasound technology, hormone testing, and through the discovery of multiple heart beats. Some multiple births may be deemed high-risk due to the number of fetuses, their arrangement, or due to complications during development.

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions. At the eight-cell stage, roughly the third day of division, all eight cells are considered totipotent, which means the cell has the capability of becoming a fully developed human being. By day four, cells begin to separate and form a spherical layer which eventually becomes the placenta and tissue that support the development of the future fetus. A mass of about thirty cells, called the inner cell mass, forms at one end of the sphere and eventually becomes the body. When the sphere and inner cell mass are fully formed, around day 5, the pre-implantation embryo is referred to as a blastocyst. At this point the cells in the inner cell mass have not yet differentiated, but have the ability to develop into any specialized cell type that makes up the body. This property is known as pluripotency. As of 2009, embryonic stem cells refer to pluripotent cells that are generally derived from the inner cell mass of blastocysts.

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis (CF). Tsui's research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in the cell membrane in epithelial tissues and affects multiple organ systems in the human body. Mutations in the CFTR gene cause dysfunctional regulation of cell electrolytes and water content. Research on the CFTR mutation has shed light on the ways in which this gene is vital to normal human development.

In 1934 a fourteen-day-old embryo was discovered during a postmortem examination and became famous for being the youngest known human embryo specimen at the time. The embryo was coined "the Yale Embryo," named after the location where it was discovered, Yale University in New Haven, Connecticut. During the early twentieth century, the rush to collect embryos as well as to find younger and younger embryos was at an all time high, and the Yale Embryo is representative of the this enthusiasm. The young embryo had a significant impact on human embryo collection and developmental studies as well as on the career of its discoverer.

Lennart Nilsson is a world-renowned photojournalist recognized for his exploratory images of the inside of the human body. Throughout his career, Nilsson has received a great deal of publicity for his images documenting the human reproductive system and the morphology of viruses. His photography was the first to capture early human development and the developmental stages of embryos and fetuses. These images have helped shape the way the public visualizes development.

In Birth without Violence (1975), French obstetrician Frederick Leboyer describes in poetic form the possible perceptions and feelings of embryos and fetuses before, during, and after birth. His work has helped to promote a gentler and more sensitive birthing method with the goal of easing the newborn's transition from the womb to the outside world. Leboyer's birthing method influenced later birth techniques such as water birth and unassisted childbirth.

Written, produced, and directed by Toby Mcdonald, the 2005 National Geographic Channel film In the Womb uses the most recent technology to provide an intricate glimpse into the prenatal world. The technologies used, which include advanced photography, computer graphics, and 4-D ultrasound imaging, help to realistically illustrate the process of development and to answer questions about the rarely seen development of a human being. The following description of the images and narrative of the film captures the major points of In the Womb, and of embryonic and fetal development, as they are seen at the outset of the twenty-first century, depicted in only 100 minutes.

Subscribe to Human Development