In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes. Lo’s team published their results in 1997’s “Presence of Fetal DNA in Maternal Plasma and Serum.” The results led to developments of clinical tests that can access fetal genetic information and detect genetic abnormalities before birth without the significant risks that can potentially harm the fetus associated with invasive genetic testing techniques.

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types. Gurdon's experiment disproved the theory that differentiated cells could not be undifferentiated or dedifferentiated into a new type of differentiated cell. Gurdon's experiment demonstrated nuclear transplantation, also called cloning, using differentiated cells.

Noninvasive fetal aneuploidy detection technology allows for the detection of fetal genetic conditions, specifically having three chromosomes, a condition called aneuploidy, by analyzing a simple blood sample from the pregnant woman. Dennis Lo and Rossa Chiu researched methods of detection of aneuploidies in the early twenty-first century. Their research has been specifically applied to three trisomies, trisomy twenty-one known as Down syndrome, trisomy eighteen known as Edwards Syndrome, and trisomy thirteen known as Patau Syndrome. Prior to the ability to detect fetal DNA in a pregnant woman’s blood, physicians performed amniocentesis or chorionic villus sampling, two techniques that increase the risk of spontaneous abortion. Noninvasive detection of trisomy twenty-one, eighteen, and thirteen technology allows for a more accurate and safer detection of those conditions than methods available before.

Subscribe to University College (University of Oxford)