Edgar Allen identified and outlined the role of female sex hormones and discovered estrogen in the early 1900s in the US. In 1923, Allen, through his research with mice, isolated the primary ovarian hormone, later renamed estrogen, from ovarian follicles and tested its effect through injections in the uterine tissues of mice. Allen’s work on estrogen, enabled researchers to further study hormones and the endocrine system.
Estrogen is the primary sex hormone in women and it functions during the reproductive menstrual cycle. Women have three major types of estrogen: estrone, estradiol, and estriol, which bind to and activate receptors within the body. Researchers discovered the three types of estrogen over a period of seven years, contributing to more detailed descriptions of the menstrual cycle. Each type of estrogen molecule contains a slightly different arrangement or number of atoms that in turn causes some of the estrogens to be more active than others. The different types of estrogen peak and wane throughout women's reproductive cycles, from normal menstruation to pregnancy to the cessation of menstruation (menopause). As scientists better explained the effects of estrogens, they used that information to develop oral contraceptives to control pregnancy, to map the menstrual cycle, and to create hormone therapies to regulate abnormal levels of estrogen.
In the early 1920s, researchers Edgar Allen and Edward Adelbert Doisy conducted an experiment that demonstrated that ovarian follicles, which produce eggs in mammals, also contain and produce what they called the primary ovarian hormone, later renamed estrogen. In their experiment, Doisy and Allen extracted estrogen from the ovarian follicles of hogs and proved that they had isolated estrogen by using a measurement later renamed the Allen-Doisy test. Allen and Doisy’s 1923 experiment to isolate estrogen showed it was made within the ovaries and also established a method for isolating the sex hormone. That method provided a basis for future research on hormones. Later researchers showed that estrogen functions in the menstrual cycles of primates by signaling for the tissue lining the uterus (endometrium) to thicken in preparation for possible implantation of a fertilized egg.
The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.