The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925. Wilson dedicated the book to the cell biologist Theodor Boveri, whose work established the roles of chromosomes in cell division. With its explanations and many illustrations and diagrams, The Cell in Development and Inheritance enabled embryologists to better understand development in terms of cell structure and function.
Andrew Francis Dixon studied human anatomy and egg cells at the turn of the twentieth century in Ireland and Great Britain. Dixon studied the sensory and motor nervous system of the face, the cancellous bone tissue of the femur, supernumerary kidneys, and the urogenital system. In 1927 Dixon described a mature human ovarian follicle. This follicle, Dixon noted, contained an immature human egg cell (oocyte) with a visible first polar body and the beginnings of the second polar body. Dixon's work helped researchers describe many of the items found in follicles during the production of oocytes, and it helped them identify when, where, and how those items were produced. Based upon his descriptions, later researchers further described polar bodies and investigated their functions.
Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success. However, the primary function of meiosis is the reduction of the ploidy (number of chromosomes) of the gametes from diploid (2n, or two sets of 23 chromosomes) to haploid (1n or one set of 23 chromosomes). While parts of meiosis are similar to mitotic processes, the two systems of cellular division produce distinctly different outcomes. Problems during meiosis can stop embryonic development and sometimes cause spontaneous miscarriages, genetic errors, and birth defects such as Down syndrome.
Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.
Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.
In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations. Mitalipov and Tachibana, researchers at the Oregon National Primate Research Center in Beaverton, Oregon, developed a technique to remove the nucleus of the mother and place it in a donor oocyte, or immature egg cell, with healthy mitochondria. The resulting offspring contain the genetic material of three separate individuals and do not have the disease. Mitalipov and Tachibana's technology of mitochondrial gene replacement built on decades of research by different scientists and enables researchers to prevent the transmission of human mitochondrial diseases from mother to offspring.
Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another egg that had its nucleus removed. Mitochondria are organelles found in all cells and contain some of the cell’s genetic material. Mutations in the mitochondrial DNA can lead to neurodegenerative and muscle diseases. Mitalipov and Tachibana used spindle replacement to produce healthy offspring from an egg with mutated mitochondria in rhesus macaques (Macaca mulatta). The experiment showed that spindle transfer eliminated the chance of transmission of mitochondrial diseases from the affected primates to their offspring, offering the potential to eliminate mitochondrial diseases in humans.