Sperm capacitation refers to the physiological changes spermatozoa must undergo in order to have the ability to penetrate and fertilize an egg. This term was first coined in 1952 by Colin Russell Austin based on independent studies conducted by both Austin himself as well as Min Chueh Chang in 1951. Since the initial reports and emergence of the term, the details of the process have been more clearly elucidated due to technological advancements. The recognition of the phenomenon was quite important to early in vitro fertilization experiments as well as the continued understanding of embryology and reproductive biology.

In 1984, human genetics and reproduction researcher and physician Joseph D. Schulman founded the Genetics and IVF Institute, an international organization that provides infertility treatment and genetic services to patients. IVF stands for in vitro fertilization, an infertility treatment in which a female egg is fertilized by male sperm outside of the female body. GIVF is headquartered in Fairfax, Virginia, in association with Inova Health System, formerly called the Fairfax Hospital Association, one of the largest regional hospital systems in the United States. GIVF offers multiple infertility and genetic services including IVF, donor egg and donor sperm programs, prenatal genetic diagnostic testing, and sex selection technology. GIVF was one of the first medical facilities in the United States to offer IVF and has innovated other infertility treatments and genetic services.

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability. In most cells, telomeres shorten with each cell division due to incomplete replication, though the enzyme telomerase functions in some cell lines that undergo repetitive divisions to replenish any lost length and to prevent degradation. Cells, and therefore organisms, with short telomeres are more susceptible to mutations and genetic diseases. While TL increases in a subset of sperm cells and longer telomeres may prevent early disintegration of DNA, it may also prevent natural mechanisms of apoptosis, or cell death, from occurring in abnormal sperm.

Wilhelm August Oscar Hertwig contributed to embryology through his studies of cells in development and his discovery that only one spermatozoon is necessary to fertilize an egg. He was born 21 April 1849 to Elise Trapp and Carl Hertwig in Hessen, Germany. After his brother Richard was born the family moved to Muhlhausen in Thuringen where the boys were educated. The two brothers later attended the university in Jena from 1868 to 1888 and studied under Ernst Haeckel, who later convinced Hertwig to leave chemistry and pursue medicine. Hertwig became an assistant professor of anatomy at Jena in 1878 and full professor three years later. He was the first chair of both cytology and embryology in Berlin from 1888 to 1921 and director of the new Anatomical-Biological Institute there. Hertwig also became a member of the Prussian Academy of Sciences in Berlin and the Leopoldina Academy in Jena.

"MicroSort, developed in 1990 by the Genetics and IVF Institute, is a form of pre-conception sex selection technology for humans. Laboratories located around the world use MicroSort technology to help couples increase their chances of conceiving a child of their desired sex. MicroSort separates male sperm cells based on which sex chromosome they contain, which results in separated semen samples that contain a higher percentage of sperm cells that carry the same sex chromosome. The technology ultimately enables couples to choose the sex of their future child by choosing semen samples that predominately contain sperm with the X chromosome for a female or Y chromosome for a male. MicroSort technology is a sperm sorting technique that provides couples worldwide a means of pre-conception sex selection.

In the 1960s in the United States Landrum B. Shettles developed the Shettles method, which is a procedure for couples to use prior to and during an intercourse to increase their chances of conceiving a fetus of their desired sex. Shettles, a physician, who specialized in obstetrics and gynecology, found a difference in the size and shape of male sperm cells that he correlated with the different sex chromosomes they carry. Based on that finding, Shettles developed procedures for couples to follow based on whether they desire a female or a male fetus and published them in the 1970 book, Your Baby’s Sex: Now You Can Choose. The Shettles method is based on the idea that male-producing sperm prefer alkaline conditions, whereas female-producing sperm prefer acidic conditions. The method provides couples with a procedure intended to enhance the favored environment for the sperm that will supposedly produce the desired sex, including female douches to be used before intercourse and how to time sexual intercourse within the female menstrual cycle. The book Your Baby’s Sex: Now You Can Choose, made the Shettles method a widely popular method of natural sex selection.

Spermism was one of two models of preformationism, a theory of embryo generation prevalent in the late seventeenth through the end of the eighteenth century. Spermist preformationism was the belief that offspring develop from a tiny fully-formed fetus contained within the head of a sperm cell. This model developed slightly later than the opposing ovist model because sperm cells were not seen under the microscope until about 1677. Spermism was never as dominant as ovist preformationism, but it had ardent followers whose work and writings greatly influenced the development of embryology in this time period. Spermism was and is now sometimes referred to as animalculism, a name taken from the term most naturalists at the time used to refer to microscopic organisms, or vermiculism, which comes from a specific term for sperm cells referring to their worm-like appearance. The most notable spermist philosophers and scientists were Nicolaas Hartsoeker, Anton Leeuwenhoek, and Wilhelm Gottfried Liebniz.

Ovism was one of two models of preformationism, a theory of generation prevalent in the late seventeenth through the end of the eighteenth century. Contrary to the competing theory of epigenesis (gradual emergence of form), preformationism held that the unborn offspring existed fully formed in the eggs or sperm of its parents prior to conception. The ovist model held that the maternal egg was the location of this preformed embryo, while the other preformationism model known as spermism preferred the paternal germ cell, as the name implies.

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell. This sketch is important to embryology because it is one of the most illustrative examples of preformationism, a theory of generation stating that each future member of any given species exists, fully formed though miniscule, within the gametic cells (sperm or eggs) of its parents. This theory was popular among naturalists in the eighteenth century.

Subscribe to Sperm