Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix. Hay also discovered a phenomenon later called epithelial-mesenchymal transition, a process that occurs during normal embryo and adult development in which epithelial cells, cells that line external and internal surfaces of the body, transform into mesenchymal stem cells, connective tissue cells that are capable of turning into other cell types. Hay's work helped researchers explain normal developmental processes and enabled research into abnormal processes that can cause developmental defects and diseases.

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Aristotle studied developing organisms, among other things, in ancient Greece, and his writings shaped Western philosophy and natural science for greater than two thousand years. He spent much of his life in Greece and studied with Plato at Plato's Academy in Athens, where he later established his own school called the Lyceum. Aristotle wrote greater than 150 treatises on subjects ranging from aesthetics, politics, ethics, and natural philosophy, which include physics and biology. Less than fifty of Aristotle's treatises persisted into the twenty-first century. In natural philosophy, later called natural science, Aristotle established methods for investigation and reasoning and provided a theory on how embryos generate and develop. He originated the theory that an organism develops gradually from undifferentiated material, later called epigenesis.

Kurt Benirschke studied cells, placentas, and endangered species in Germany and the US during the twentieth century. Benirschke was professor at the University of California in San Diego, California, and a director of the research department at the San Diego Zoo in San Diego, California. He also helped form the research department of the San Diego Zoo and its sister organization, the Center for Reproduction of Endangered Species. Benirschke contributed to the field of embryology through his work on human and animal reproduction, including work on human placentas and birth defects, through work on the structure of chromosomes, and through work on the reproduction and conservation of endangered species.

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through the blastocyst stage just before it implants in the uterus. Embryonic stem cells are useful for experiments because they are self-renewing and able to develop into almost any cell type in the body. Martin later identified a key chemical component in limb development and continues to study embryogenesis, or the growth of embryos over time. Martin’s work on embryonic stem cells has allowed scientists to further research and treat human diseases, and her study of how organs form has helped scientists learn about the healthy growth of embryos.

In 1974, Elizabeth Dexter Hay and Stephen Meier in the US conducted an experiment that demonstrated that the extracellular matrix, the mesh-like network of proteins and carbohydrates found outside of cells in the body, interacted with cells and affected their behaviors. In the experiment, Hay and Meier removed the outermost layer of cells that line the front of the eye, called corneal epithelium, from developing chick embryos. Prior to their experiment, scientists observed that corneal epithelium produced collagen, the primary component of the extracellular matrix, which provides structural support to cells throughout the body. In their experiment, Hay and Meier confirmed that the lens capsule, a collagen-containing structure of the eye’s extracellular matrix, induced the corneal epithelium to produce collagen. That result demonstrated that extracellular matrix interactions affect tissue development in developing embryos.

Fortunio Liceti studied natural philosophy and medicine in Italy during the first half of the seventeenth century. Liceti wrote greater than seventy works on a wide range of topics, including the human soul, reproduction, and birth defects observed in animals and human infants. In the seventeenth century, people commonly addressed birth defects using superstition and considered them as signs of evil, possibly caused by spiritual or supernatural entities. Liceti described infants with birth defects as prodigies and monsters to be admired and studied rather than feared. Liceti’s works established monsters as a possible subject of scientific inquiry and served as models for the future study of birth defects, a field later called teratology. Liceti was one of the first scholars to attempt to systematically categorize birth defects based on their causes, including multiple causes unrelated to the supernatural.

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of evolution by which species undergo long periods of stasis followed by rapid changes over relatively short periods instead of continually accumulating slow changes over millions of years. In his 1977 book, Ontogeny and Phylogeny, Gould reconstructed a history of developmental biology and stressed the importance of development to evolutionary biology. In a 1979 paper coauthored with Richard Lewontin, Gould and Lewonitn criticized many evolutionary bioligists for relying solely on adaptive evolution as an explanation for morphological change, and for failing to consider other explanations, such as developmental constraints.

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.

Subscribe to Embryology