Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms. Moreover, Geoffroy emphasized the concept of l'unite de composition (the unity of plan). Geoffroy disputed in 1830 with Georges Cuvier over whether form or function matters most for the study of anatomy and whether the transformation of organic forms can occur over time. Geoffroy's conceptual contributions, as well as his experimental research, influenced embryological research on animal morphology and teratogens, and later the field of evolutionary paleontology.

Neurocristopathies are a class of pathologies in vertebrates, including humans, that result from abnormal expression, migration, differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells derived from the embryonic cellular structure called the neural crest. Abnormal NCCs can cause a neurocristopathy by chemically affecting the development of the non-NCC tissues around them. They can also affect the development of NCC tissues, causing defective migration or proliferation of the NCCs. There are many neurocristopathies that affect many different types of systems. Some neurocristopathies result in albinism (piebaldism) and cleft palate in humans. Various pigment, skin, thyroid, and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract, and tumors can be classified as neurocristopathies. This classification ties a variety of disorders to one embryonic origin.

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle. The diversity of NCCs that the neural crest produces has led researchers to propose the neural crest as a fourth germ layer, or one of the primary cellular structures in early embryos from which all adult tissues and organs arise. Furthermore, evolutionary biologists study the neural crest because it is a novel shared evolutionary character (synapomorphy) of all vertebrates.

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes. They found that when those genes were changed or mutated, the mutated genes disrupted the normal development of fruit fly larvae. The researchers called one of the genes hedgehog (abbreviated hh). Nusslein-Volhard, Wieschaus, and Edward B. Lewis, at the California Institute of Technology in Pasadena, California, shared the 1995 Nobel Prize for Physiology or Medicine for their research on how genes control early embryonic development in fruit flies. The hedgehog signaling pathway is conserved across many animal taxa or phyla, from Drosophila to humans. The hedgehog signaling pathway controls several key components of embryonic development, stem-cell maintenance, and it influences the development of some cancers.

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers. Animals that have only two germ layers develop open digestive cavities. In contrast, the evolutionary development of the mesoderm allowed in animals the formation of internal organs such as stomachs and intestines (viscera).

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Felix Anton Dohrn is best remembered as the founder of the Stazione Zoologica di Napoli, the world' s first permanent laboratory devoted to the study of marine organisms. Dohrn was born on 29 December 1840 in Stettin, Pomerania (now Poland), to a wealthy merchant family. Dohrn's paternal grandfather, Heinrich, trained as a surgeon and then established a sugar refinery, while Dohrn's father, Carl August Dohrn, who inherited the family business, became interested in natural history through Alexander von Humboldt, a family friend. Once settled in his career, Anton Dohrn's own research never strayed far from the origin of vertebrates. He promoted the theory that vertebrates closely resemble and are derived from annelid-like ancestors and he spent years studying the early embryogenesis of lower vertebrates in attempts to prove this.

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

The review article “Cell Deaths in Normal Vertebrate Ontogeny” (abbreviated as “Cell Deaths”) was published in Biological Reviews of the Cambridge Philosophy Society in 1951. The author, Alfred Glücksmann, was a German developmental biologist then working at the Strangeways Research Laboratory, Cambridge, England. In “Cell Deaths,” Glücksmann summarizes observations about cell death in normal vertebrate development that he had compiled from literature published during the first half of the twentieth century. “Cell Deaths” emphasizes the frequent occurrence of cell death in various locations and stages of development, and suggests that cell death functions as a crucial mechanism in integrating cells into tissues and organs in normal vertebrate ontogeny.

Subscribe to Vertebrates