In 1993, Dean H. Hamer and colleagues in the US published results from their research that indicated that men with speicifc genes were more likely to be homosexual than were men without those genes. The study hypothesized that some X chromosomes contain a gene, Xq28, that increases the likelihood of an individual to be homosexual. Prior to those results, researchers had argued that the cause of homosexuality was environmental and that homosexuality could be altered or reversed. Hamer’s research suggested a possible genetic cause of homosexuality. The study inspired further research into biological mechanisms of homosexuality.

In 1931, physician Lucy Wills conducted a study of nutritional deficiencies that caused anemia in pregnant women in Bombay, India, later renamed Mumbai. Anemia is a lack of healthy red blood cells in the blood. Wills published the results of her study in the medical article 'Treatment of ‘Pernicious Anaemia of Pregnancy' and 'Tropical Anaemia'' in the British Medical Journal in 1931. Wills's research contributed to knowledge of anemia and the possible causes associated with the disease, such as the symptoms of fatigue and irritability. Wills attempted to connect the association of B vitamins and anemia. Wills's findings influenced scientists to research the importance of folic acid, one of the B group vitamins, and the role it plays in the development of a fetus and in women's health.

From 1958 to 1961, Leonard Hayflick and Paul Moorhead in the US developed a way in the laboratory to cultivate strains of human cells with complete sets of chromosomes. Previously, scientists could not sustain cell cultures with cells that had two complete sets of chromosomes like normal human cells (diploid). As a result, scientists struggled to study human cell biology because there was not a reliable source of cells that represented diploid human cells. In their experiments, Hayflick and Moorhead created lasting strains of human cells that retained both complete sets of chromosomes. They then froze samples from the cultures so that the cells remained viable for future research. They also noted that cells could divide only a certain number of times before they degraded and died, a phenomenon later called the Hayflick limit. Hayflick and Moorhead’s experiment enabled research on developmental biology and vaccines that relied on human cell strains.

In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool. In bacteria and archaea, researchers had found that CRISPR, which stands for clustered regularly interspaced short palindromic repeats, and CRISPR associated proteins, or cas, helped organisms recognize and silence the genetic material of viruses that have infected the cell before. In their experiment, Doudna, Charpentier, and their colleagues found how the specific molecules in bacteria can recognize and cut specific DNA sequences of invading viruses. Doudna, Charpentier, and their colleagues’ discovery of the CRISPR/cas 9 mechanism and proposal of using CRISPR/cas 9 for genetic editing led to the successful engineering of CRISPR/cas 9 as a novel method of editing genomes.

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958. The experiment verified James Watson and Francis Crick’s model for the structure of DNA, which represented DNA as two helical strands wound together in a double helix that replicated semi-conservatively. The Watson-Crick Model for DNA later became the universally accepted DNA model. The Meselson-Stahl experiment enabled researchers to explain how DNA replicates, thereby providing a physical basis for the genetic phenomena of heredity and diseases.

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism.

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males. Through more breeding analysis, Morgan found that the genetic factor controlling eye color in the flies was on the same chromosome that determined sex. That result indicated that eye color and sex were both tied to chromosomes and helped Morgan and colleagues establish that chromosomes carry the genes that allow offspring to inherit traits from their parents.

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila, the common fruit fly. In his experiments, Sturtevant determined the relative positions of six genetic factors on a fly’s chromosome by creating a process called gene mapping. Sturtevant’s work on gene mapping inspired later mapping techniques in the twentieth and twenty-first centuries, techniques that helped scientists identify regions of the chromosome that when mutated cause organisms to develop abnormally and to create treatments to cure those kinds of disorders.

From 1993 to 1995 researchers led by Robert J. Berry from the US Centers for Disease Control headquartered in Atlanta, Georgia, and Zhu Li from Beijing Medical University in Beijing, China, conducted a collaborative study in China on the prevention of neural tube defects or NTDs using folic acid supplements. NTDs are birth defects in which openings in the spinal cord or the brain that occur during early development remain after birth. Neural-tube formation occurs in early pregnancy, often before a woman knows she is pregnant and therefore before she has begun taking prenatal vitamins. The researchers presented their findings in the article “Prevention of the Neural Tube Defects with Folic Acid in China” published in 1999 in The New England Journal of Medicine. The researchers from The China-US study found that women who took folic acid in the periconceptional period, or the time before conception through the first twenty-eight days after conception, reduced the occurrence of NTDs.

In 1952, researchers Christopher Polge and Lionel Edward Aston Rowson, who worked at the Animal Research Center in Cambridge, England, detailed several experiments on protocols for freezing bull semen for use in the artificial insemination of cows. Freezing sperm extends the life of a viable sperm sample and allows it to be used at later times, such as in artificial insemination. The researchers examined the effects of freezing conditions on bull sperm and how well they produce fertilized embryos once thawed. Polge and Rowson concluded that bull sperm can retain its fertility throughout the freezing process and that frozen bull sperm can yield pregnancy rates of up to seventy-nine percent. Polge and Rowson provided the first conclusive evidence that frozen mammalian sperm, once thawed, can produce viable pregnancies.

Subscribe to Experiments