As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane. Domestic chicken (Gallus gallus) gastrulation was also an early model organism because researchers could open the egg during development to look inside. Despite the challenges associated with studying mammalian gastrulation, the common house mouse (Mus musculus) has helped to shed light on the unique adaptations associated with mammalian development, and on the subtle differences in structure that give rise to significant divergence in late embryogenesis.

In an effort to develop tissue culture techniques for long-term tissue cultivation, French surgeon and biologist Alexis Carrel, and his associates, produced and maintained a series of chick heart tissue cultures at the Rockefeller Institute in New York City. From 1912 to 1946, this series of chick heart tissue cultures remained alive and dividing. Since the duration of this culture greatly exceeded the normal chick life span, the cells were deemed immortal. Although this conclusion was challenged by further experiments in the 1960s, the publicity surrounding the immortal chick heart tissue significantly influenced the concept of cell immortality and cellular aging from the 1920s through the 1960s. Carrel's experiment convinced many biologists to accept immortality as an intrinsic property of all cells, not just the cell line through which genetic material is passed to offspring, called the germ line. Consequently, the phenomenon of cellular aging was regarded not as an intrinsic characteristic, but was attributed to external factors such as the accumulation of waste products within the cell.

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Subscribe to Germ Cells