Allan C. Wilson studied genes, proteins, and body structures of animals and humans in the US during the second half of the twentieth century. Wilson also studied human evolution. Although morphology and behaviors of humans (Homo sapiens) and great apes differ, Wilson found that they have biochemical and genetic similarities. Wilson and his colleagues calculated the time period of humans' and African apes' common ancestor. Wilson and his team also studied DNA outside of the nucleus in the cellular energy producing particles, called mitochondrial DNA (mtDNA), to study when different human groups evolved from each other.

To study human evolution, researchers sometimes use microstructures found in human teeth and their knowledge of the processes by which those structures grow. Human fetusus begin to develop teeth in utero. As teeth grow, they form a hard outer substance, called enamel, through a process called amelogenesis. During amelogenesis, incremental layers of enamel form in a Circadian rhythm. This rhythmic deposition leaves the enamel with microstructures, called cross-striations and striae of Retzius, which have a regular periodicity. Because enamel is not renewed throughout life like other tissues, teeth preserve the timing and details of a person's growth and development. Thus, enamel microstructures, from living people and from fossilized teeth, can be used to reconstruct the growth, development, and life histories of current and past humans. Researchers can also compare current and fossilized microstructures to trace changes in those traits over the course of human evolution.

Wilhelm Ludvig Johannsen studied plants and helped found the field of genetics, contributing methods and concepts to the study of heredity around the turn of the twentieth century in Denmark. His experiments on heredity and variation in plants influenced the methods and techniques of geneticists, and his distinction between the genotype of an organism-its hereditary disposition-and its phenotype-its observable characteristics-remains at the core of contemporary biology. Johannsen criticized biological explanations that relied on concepts such as vitalism and teleology. For an alternative, he advocated a realist and materialist approach to biology, but one that did not attempt to reduce biological phenomena to the laws of physics and chemistry.

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

David Starr Jordan studied fish and promoted eugenics in the US during the late nineteenth and early twentieth centuries. In his work, he embraced Charles Darwin s theory of evolution and described the importance of embryology in tracing phylogenic relationships. In 1891, he became the president of Stanford University in Stanford, California. Jordan condemned war and promoted conservationist causes for the California wilderness, and he advocated for the eugenic sterilization of thousands of Americans. Like many American eugenicists of the early twentieth century, Jordan combined ideas of Mendelian genetics and of Darwinian natural selection to form a basis for limiting or encouraging reproduction in certain individuals and groups based on their perceived hereditary fitness. Like other eugenicists, Jordan s attempt to control the reproductive fate of entire populations marked an episode in the history of reproduction and biology in which its concepts increasingly influenced the social and cultural contexts.

Georges Cuvier, baptized Georges Jean-Leopold Nicolas-Frederic Cuvier, was a professor of anatomy at the National Museum of Natural History in Paris, France, through the late eighteenth and early nineteenth centuries. Scholars recognize Cuvier as a founder of modern comparative anatomy, and as an important contributor to vertebrate paleontology and geology. Cuvier studied the form and function of animal anatomy, writing four volumes on quadruped fossils and co-writing eleven volumes on the natural history of fish with Achille Valenciennes. Moreover, Cuvier constructed a system of classification based on specific and well-articulated principles to help anatomists classify animal taxa. Cuvier had public debate in 1830 with Etienne Geoffroy Saint-Hilaire, a dispute centered on whether form or function matters most for the study of anatomy and whether the transmutation of organic forms can occur over time. Cuvier's opinions influenced the development of biology in France, and his arguments against transmutation of types influenced the reception of Charles Darwin's theory of evolution by natural selection among many French naturalists.

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms. Moreover, Geoffroy emphasized the concept of l'unite de composition (the unity of plan). Geoffroy disputed in 1830 with Georges Cuvier over whether form or function matters most for the study of anatomy and whether the transformation of organic forms can occur over time. Geoffroy's conceptual contributions, as well as his experimental research, influenced embryological research on animal morphology and teratogens, and later the field of evolutionary paleontology.

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell biology. In The Cell, Wilson described the evidence and theories of his time about cells and identified topics for future study. He helped show how each part of the cell works during cell division and in every step of early development of an organism. Developmental biologists trained in the mid-twentieth century reported WilsonÕs text as their foundation for understanding biology, including about how cells, development, heredity, and evolution interact. Wilson considered cells as the center of all biological phenomena.

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA). Cummins's article describes how mitochondria influence the development of egg cells called oocytes. Mitochondria also function in the union of oocyte and sperm, early formation of the embryo, and in in vitro fertilization (IVF) techniques, such as the transfer of donor cytoplasm into an oocyte resulting in a technique called ooplasmic transfer.

The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as ontogeny recapitulates phylogeny, the biogenetic law theorizes that the stages an animal embryo undergoes during development are a chronological replay of that species' past evolutionary forms. The biogenetic law states that each embryo's developmental stage represents an adult form of an evolutionary ancestor. According to the law, by studying the stages of embryological development, one is, in effect, studying the history and diversification of life on Earth. The biogenetic law implied that researchers could study evolutionary relationships between taxa by comparing the developmental stages of embryos for organisms from those taxa. Furthermore, the evidence from embryology supported the theory that all of species on Earth share a common ancestor.

Subscribe to Evolution