Jacques Loeb published The Mechanistic Conception of Life in 1912. Loeb's goal for the book was to further disseminate his explanations of organic processes, such as embryonic development and organisms orientations to their environments, which relied on physics and chemistry. Loeb also wanted to provide an alternative explanatory framework to vitalism and what he called romantic evolutionism, then both widespread. Loeb mined his work on tropisms and artificial parthenogenesis, both of which he considered central to biology, to show that physicochemical explanations accounted for some of the most perplexing organic phenomena. Thus, for those processes, anyone who appealed to vitalism or romantic evolutionism offered impotent explanations. The Mechanistic Conception of Life established Loeb's widespread reputation as a mechanist, both to the public and to generations of biologists.

Jacques Loeb broadened and corrected his earlier claims concerning artificial parthenogenesis in sea urchins in a series of experiments in 1900. He published these findings, "Further Experiments on Artificial Parthenogenesis and the Nature of The Process of Fertilization," in a 1900 issue of The American Journal of Physiology. His new results amended those from earlier experiments he summarized in 1899's "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin." Loeb's 1899 results were tainted by improperly prepared salts used in his experiments. Loeb's 1900 results corrected those of 1899 and led to more refined study of artificial parthenogenesis, the human-caused development of unfertilized eggs.

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science and scientific explanation, marshaling evidence from his embryological researches, to show that physicochemical biology completely and correctly explained whole organisms and their component processes.

Jacques Loeb showed that scientists could achieve artificial parthenogenesis with some types of annelid worm eggs through a series of experiments in 1900. Loeb published the results of his experiments in 1901 as "Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization," in The American Journal of Physiology. Loeb 's results broadened the range of animals to which artificial parthenogenesis applied beyond sea urchins. Scientists could now also cause artificial parthenogenesis with the eggs of Chaetopterus, a segmented marine worm.

Jacques Loeb experimented on embryos in Europe and the United States at the end of the nineteenth and beginning of the twentieth centuries. Among the first to study embryos through experimentation, Loeb helped found the new field of experimental embryology. Notably, Loeb showed scientists how to create artificial parthenogenesis, thus refuting the idea that spermatozoa alone were necessary to develop eggs into embryos and confirming the idea that the chemical constitution of embryos environment affected their development. Furthermore, Loeb' s work showed that scientists could manipulate materials in a laboratory to create, as he called the process, the beginning stages of life.

Jacques Loeb published "Mechanistic Science and Metaphysical Romance" in 1915. His goal for the article was to outline his conception of mechanistic science and its relation to other methods of inquiry. Loeb argued that mechanistic science was the foundation of knowledge and humanity's progress depended on it. Loeb's argument altered the account of science he offered in The Mechanistic Conception of Life insofar as scientists no longer aimed merely to control nature, but also to understand nature s underlying elements and their mechanical relations. Loeb relied on the results of his research into fish embryos and tropisms to bolster his argument.

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments. Following those publications, however, he discovered he had used inaccurately labeled salts and redid his experiments to determine the correct amount of salts needed for artificial parthenogenesis.

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by sperm. As is true with much of science, some of Loeb's experiments were successful and many were not. Artificial Parthenogenesis presents a sense of what early twentieth century embryology looked like: experimenters' overarching desire for manipulation and control, coupled with their use of chemicals and macromolecules as agents of change. The book also illuminates the historical role of the sea urchin in the study of embryological development.

Subscribe to Loeb, Jacques, 1959-1924