In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool. In bacteria and archaea, researchers had found that CRISPR, which stands for clustered regularly interspaced short palindromic repeats, and CRISPR associated proteins, or cas, helped organisms recognize and silence the genetic material of viruses that have infected the cell before. In their experiment, Doudna, Charpentier, and their colleagues found how the specific molecules in bacteria can recognize and cut specific DNA sequences of invading viruses. Doudna, Charpentier, and their colleagues’ discovery of the CRISPR/cas 9 mechanism and proposal of using CRISPR/cas 9 for genetic editing led to the successful engineering of CRISPR/cas 9 as a novel method of editing genomes.

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells. Church and his colleagues also created a database that identified 190,000 unique guide RNAs for targeting almost half of the human genome that codes for proteins. In RNA-Guided Human Genome Engineering via Cas 9, the authors demonstrated that RNA-guided Cas 9 was a robust and simple tool for genetic engineering, which has enabled scientists to more easily manipulate genomes for the study of biological processes and genetic diseases.

Subscribe to Transcription Activator-Like Effector Nucleases