During the twentieth century, Austin Bradford Hill researched diseases and their causes in England and developed the Bradford Hill criteria, which comprise the minimal requirements that must be met for a causal relationship to be established between a factor and a disease. Hill also suggested that researchers should randomize clinical trials to evaluate the effects of a drug or treatment by monitoring large groups of people. In addition, Hill advocated for case-control studies, in which researchers compare a group of people with a medical condition to a group without that condition to investigate the condition's possible causes. Hill's own work with clinical trials and case-control studies helped him prove that smoking caused lung cancer. The Bradford Hill criteria have also been used to establish causal links between factors and cancer, including reproductive cancers such as human papillomavirus that causes cervical cancer.

In the 1949 article “Revival of Spermatozoa after Dehydration and Vitrification at Low Temperatures,” researchers Christopher Polge, Audrey Ursula Smith, and Alan Sterling Parkes demonstrated that glycerol prevents cells from dying while being frozen. Polge and his colleagues discussed several procedures in which they had treated sperm cells from various species with glycerol, froze those cells, and then observed the physiological effects that freezing had on the treated sperm. The researchers concluded that glycerol safely preserves sperm samples from a variety of species. Polge, Smith, and Parkes’s 1949 article detailed one of the first successful uses of a chemical medium to preserve viable cells in a frozen state, a process that eventually enabled the first vertebrate embryo to be successfully conceived using frozen sperm.

In 1952, researchers Christopher Polge and Lionel Edward Aston Rowson, who worked at the Animal Research Center in Cambridge, England, detailed several experiments on protocols for freezing bull semen for use in the artificial insemination of cows. Freezing sperm extends the life of a viable sperm sample and allows it to be used at later times, such as in artificial insemination. The researchers examined the effects of freezing conditions on bull sperm and how well they produce fertilized embryos once thawed. Polge and Rowson concluded that bull sperm can retain its fertility throughout the freezing process and that frozen bull sperm can yield pregnancy rates of up to seventy-nine percent. Polge and Rowson provided the first conclusive evidence that frozen mammalian sperm, once thawed, can produce viable pregnancies.

Between 1935 and 1937, Leonard Colebrook showed that sulfonamides, a class of antibacterial drugs, worked as an effective treatment for puerperal fever. Puerperal fever is a bacterial infection that can occur in the uterus of women after giving birth. At the time of Colebrook’s study, puerperal fever remained a common disease due to both the lack of hygienic practices in hospitals and a treatment for the disease. After successfully using Prontosil, a sulfanilamide, to cure a patient who was going to die from puerperal fever, Colebrook began experiments with the drug. He successfully treated patients with puerperal fever with sulfonamides, specifically Prontosil and sulfanilamide. Colebrook conducted the experiment from 1935 to 1936 primarily at the Queen Charlotte’s Hospital in London, England. After Colebrook’s success using antibacterial drugs in treating puerperal fever, use of antibacterial drugs became widespread in developed countries and, by the 1950s, it had made maternal deaths rare in those countries.

Twentieth-century researcher Ernest John Christopher Polge studied the reproductive processes of livestock and determined a method to successfully freeze, thaw, and utilize viable sperm cells to produce offspring in animals. In 1949, Polge identified glycerol as a cryoprotectant, or a medium that enables cells to freeze without damaging their cellular components or functions. Several years later, Polge used glycerol in a freezing process called vitrification, which enabled him to freeze poultry sperm, thaw that sperm, and use it to fertilize vertebrate embryos. He later adapted those methods to be applied to several other species including goats, cows, and pigs, which enabled farmers to fertilize livestock with sperm or embryos after long-term storage. Additionally, Polge's development of methods to freeze and store living samples has equipped reproductive health researchers and medical professionals with the abilities to mass collect and store human sperm.

Subscribe to Medical Research Council (Great Britain)