Matthew Stanley Meselson conducted DNA and RNA research in the US during the twentieth and twenty-first centuries. He also influenced US policy regarding the use of chemical and biological weapons. Meselson and his colleague Franklin Stahl demonstrated that DNA replication is semi-conservative. Semi-conservative replication means that every newly replicated DNA double helix, which consists of two individual DNA strands wound together, contains one strand that was conserved from a parent double helix and that served as a template for the other strand. Meselson's work enabled researchers to better explain and control cellular development by showing how DNA are copied when a cell divides and interpreted when a cell makes proteins.

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Max Ludwig Henning Delbrick applied his knowledge of theoretical physics to biological systems such as bacterial viruses called bacteriophages, or phages, and gene replication during the twentieth century in Germany and the US. Delbrück demonstrated that bacteria undergo random genetic mutations to resist phage infections. Those findings linked bacterial genetics to the genetics of higher organisms. In the mid-twentieth century, Delbrück helped start the Phage Group and Phage Course in the US, which further organized phage research. Delbrück also contributed to the DNA replication debate that culminated in the 1958 Meselson-Stahl experiment, which demonstrated how organisms replicate their genetic information. For his work with phages, Delbrück earned part of the 1969 Nobel Prize for Physiology or Medicine. Delbrück's work helped shape and establish new fields in molecular biology and genetics to investigate the laws of inheritance and development.

In 1954 Max Delbruck published On the Replication of Desoxyribonucleic Acid (DNA) to question the semi-conservative DNA replication mechanism proposed that James Watson and Francis Crick had proposed in 1953. In his article published in the Proceedings of the National Academy of Sciences, Delbrück offers an alternative DNA replication mechanism, later called dispersive replication. Unlike other articles before it, On the Replication presents ways to experimentally test different DNA replication theories. The article sparked a debate in the 1950s over how DNA replicated, which culminated in 1957 and 1958 with the Meselson-Stahl experiment supporting semi-conservative DNA replication as suggested by Watson and Crick. On the Replication played a major role in the study of DNA in the 1950s, a period of time during which scientists gained a better understanding of DNA as a whole and its role in genetic inheritance.

Subscribe to University of Rochester