Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and minerals on his family farm and went on to study biology at Wesleyan University, commuting from his family home. Child received his PhB in 1890 and MS in biology in 1892, and then went on to study in Leipzig after his parents death. He worked for a short time in the psychology laboratory of Wilhelm Wundt, and then pursued studies in zoology under the supervision of Rudolf Leuckhart. His doctoral dissertation investigated morphological aspects of insect sense organs. Leuckhart emphasized the functional purpose of morphological structures and led many of his students to develop and defend the notion of teleology, including Child, who completed his PhD in 1894.

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia. Child observed that regeneration occurred in a graded process along the axis of the organism, with the characteristics of each physiological process seemingly determined by its location along the axis. To explain these observations, Child posited the existence of physiological factors working to guide the regenerative process. He was convinced that these differences along the gradients could be explained quantitatively.

Charles Manning Child designed an experimental test, the susceptibility assay, to measure the effects of different toxins on developmental processes. The susceptibility assay measured an organism s vulnerability to death when it was submerged in a noxious solution. The assay involved immersing an organism in a solution that contained a depressant or inhibitory substance, such as alcohol, and then measuring the responses of the organism. Child interpreted these measurements as revealing information about the relative levels of metabolic activity within the organism. Child predicted an organism's susceptibility to death should vary directly with its metabolic rate. An organism with a high metabolic rate would be expected to die more quickly in a noxious chemical solution than an organism with a lower metabolic rate: the higher the rate, the more quickly death should ensue. He also predicted young organisms should have higher metabolic rates than older organism, since children were known to metabolize drugs more quickly than adults.

Charles Manning Child designed an experimental test, the susceptibility assay, to measure the effects of different toxins on developmental processes. The susceptibility assay measured an organism s vulnerability to death when it was submerged in a noxious solution. The assay involved immersing an organism in a solution that contained a depressant or inhibitory substance, such as alcohol, and then measuring the responses of the organism. Child interpreted these measurements as revealing information about the relative levels of metabolic activity within the organism. Child predicted an organism's susceptibility to death should vary directly with its metabolic rate. An organism with a high metabolic rate would be expected to die more quickly in a noxious chemical solution than an organism with a lower metabolic rate: the higher the rate, the more quickly death should ensue. He also predicted young organisms should have higher metabolic rates than older organism, since children were known to metabolize drugs more quickly than adults.

Subscribe to Child, Charles Manning, 1869-1954