The Hayflick Limit is a concept that helps to explain the mechanisms behind cellular aging. The concept states that a normal human cell can only replicate and divide forty to sixty times before it cannot divide anymore, and will break down by programmed cell death or apoptosis. The concept of the Hayflick Limit revised Alexis Carrel's earlier theory, which stated that cells can replicate themselves infinitely. Leonard Hayflick developed the concept while at the Wistar Institute in Philadelphia, Pennsylvania, in 1965. In his 1974 book Intrinsic Mutagenesis, Frank Macfarlane Burnet named the concept after Hayflick. The concept of the Hayflick Limit helped scientists study the effects of cellular aging on human populations from embryonic development to death, including the discovery of the effects of shortening repetitive sequences of DNA, called telomeres, on the ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol Greider received the Nobel Prize in Physiology or Medicine in 2009 for their work on genetic structures related to the Hayflick Limit.

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after the Wistar Institute, in Philadelphia, Pennsylvania, where Hayflick worked. Frank MacFarlane Burnet, later called the limit in capacity for cellular division the Hayflick Limit in 1974. In the experiment, Hayflick refuted Alexis Carrel's hypothesis that cells could be transplanted and multiplied indefinitely from a single parent cell line.

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Subscribe to Wistar Institute of Anatomy and Biology