The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons. Research into the Notch gene in fruit flies began in the early twentieth century, but not until the end of the twentieth century did researchers begin to uncover, in many different species, the roles of Notch proteins for cell to cell signaling. Researchers have also found that dysfunction in the pathway can contribute to diseases such as cancer and Alzheimer's.

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism. The Notch signaling pathway is active in multiple aspects of somitogenesis, and it continues to be a critical regulator during myogenesis. Throughout the life of an organism, Notch signaling prevents the differentiation of muscle progenitor cells into muscle cells. Such preventions help maintain populations of progenitor cells that can remain dormant until the growth or repair of muscle is necessary, at which point the Notch signal to the muscle progenitor cells is disrupted, and the muscle progenitor cells differentiate into muscle fibers and cells. Without Notch signaling, myogenesis proceeds prematurely and dissipates before mature muscle can form.

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands. The physical interaction of receptors and ligands directs the genetic response of the first cell to produce proteins that define the type of cell it will become. One of the earliest discovered roles of the Notch signaling pathway in vertebrates is in somite formation (somitogenesis). Somitogenesis is the formation of somites, which are sphere-like structures in early vertebrate embryos that are the first visible signs of segmentation. Somites then help to define many tissues and features of the adult animal's body. The Notch signaling pathway plays at least two distinct roles during somitogenesis: the first is maintenance of an oscillating protein gradient, called the segmental clock, and the second is establishing the polarity of somites. Mutations to genes in the Notch pathway can result in birth defects characterized by abnormal development of bones of the spine and ribs, like spondylocostal dysostosis. Additionally, dysfunction in the pathway linked to cancer progression, HIV-related complications, and Alzheimer´s disease, among other disorders.

Subscribe to Receptors, Notch