Theodora Colborn studied how chemicals affect organisms as they develop and reproduce during the twentieth and twenty first centuries in the US. By the 1940s, researchers had reported that chemicals from agricultural and industrial processes affected how wild organisms developed, but in 1991, Colborn organized the Wingspread Conference in Racine, Wisconsin, at which a group of scientists classed these chemicals as environmentally harmful substances. Colborn and her colleagues called those chemicals endocrine disruptors, as they mimic or block the body's endocrine system. After scientists identified these chimicals and showed that they harm humans and wildlife, US Congress passed several acts to regulate these chemicals and to protect both wildlife and humans from their harmful effects.

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California. She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

Contributors
Zane Bartlett Author:
|
Nevada Wagoner Editor:

Roy Chapman Andrews traveled the world studying fossils, from mammals to dinosaurs, during the first half of the twentieth century. Andrews worked and collected fossil specimens for the American Museum of Natural History (AMNH) in New York City, New York. Throughout his career, Andrews collected bones of many animal species, including a previously unknown species of a horned, herbivorous dinosaur, later named Proceratops andrewsi in his honor. Andrews published widely read narratives about his travels and field experiences, such as On the Trail of Ancient Man and Across Mongolian Plains. Andrews led expeditions for the Central Asiatic Expeditions in the Gobi Desert, which recovered many previously unknown fossil specimens. His Central Asiatic team discovered the first scientifically recognized dinosaur eggs, which provided scientists with information about the eggs that dinosaurs produced.

During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know if phages contained genes, or whether genes were made of DNA or protein. In 1952, Hershey and his research assistant, Martha Chase, conducted phage experiments that convinced scientists that genes were made of DNA. For his work with phages, Hershey shared the 1969 Nobel Prize in Physiology or Medicine with Max Delbrück and Salvador Luria. Hershey conducted experiments with results that connected DNA to the function of genes, thereby changing the way scientists studied molecular biology and the development of organisms.

Peter Mazur was a researcher in the US who developed new ways of preserving biological material by freezing it, a process called cryopreservation. If done correctly, cryopreservation enables scientists to store or study biological material for an extended period of time. If done incorrectly, cryopreservation can easily harm or destroy biological material. Mazur worked to find the best ways to cryopreserve different cells, embryos, and organs in order to minimize the damage caused by freezing. Throughout the 1960s and 1970s, Mazur and his colleagues published a series of papers that ultimately led to the discovery of previously unexplored factors that can cause harm to cells during the cryopreservation process. He called that discovery the two-factor hypothesis. That same year, Mazur also contributed to one of the first successful attempts at cryopreserving viable mouse embryos. Mazur’s work to improve the cryopreservation process helped to establish foundational knowledge that was later used in many different fields, such as reproductive health and conservation.

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There he served at the Medici Court as both the head physician and superintendent of the ducal pharmacy and foundry. Redi was also a member of the Accademia del Cimento, which flourished from 1657-1667. It was during this decade that Redi produced his most important works.

As one of the researchers involved in the development of the oral contraceptive pill, Min Chueh Chang helped to revolutionize the birth control movement. Although best known for his involvement with "the pill," Chang also made a number of discoveries throughout his scientific career involving a range of topics within the field of reproductive biology. He published nearly 350 articles in scientific journals. His dedication to his work left him with little time for family responsibilities, although shortly after his arrival in the United States in 1951, Chang married Isabelle Chin, an American-born Chinese woman with whom he would later have three children.

During the twentieth and twenty-first centuries, Robert Paul Lanza studied embryonic stem cells, tissues, and endangered species as chief scientific officer of Advanced Cell Technology, Incorporated in Worcester, Massachusetts. Lanza's team cloned the endangered species of gaur Bos gaurus. Although the gaur did not survive long, Lanza successfully cloned another cow-like creature, called the banteng (Bos javanicus). Lanza also worked on cloning human embryos to harvest stem cells, which could be used to treat dieases. While previous techniques required the embryo's destruction, Lanza developed a harvesting technique that does not destroy the embryo, forestalling many ethical objections to human embryonic research.

Harald zur Hausen studied viruses and discovered that certain strains of the human papilloma virus (HPV), a sexually transmitted disease, can cause cervical cancer, in Europe during the twentieth and twenty-first centuries. Zur Hausen spent his research career identifying the viruses that cause diseases, particularly cancer-causing viruses (oncoviruses). He primarily focused on HPV and cervical cancer. Zur Hausen hypothesized that HPV was cancerous and discovered that two strains, HPV 16 and 18, caused cervical cancer. That discovery led to improved diagnosis of cervical cancer and the later development of the HPV vaccines, Gardasil and Cervarix. In 2008, zur Hausen won the Nobel Prize in Physiology or Medicine.

Subscribe to People