The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925. Wilson dedicated the book to the cell biologist Theodor Boveri, whose work established the roles of chromosomes in cell division. With its explanations and many illustrations and diagrams, The Cell in Development and Inheritance enabled embryologists to better understand development in terms of cell structure and function.

The Hayflick Limit is a concept that helps to explain the mechanisms behind cellular aging. The concept states that a normal human cell can only replicate and divide forty to sixty times before it cannot divide anymore, and will break down by programmed cell death or apoptosis. The concept of the Hayflick Limit revised Alexis Carrel's earlier theory, which stated that cells can replicate themselves infinitely. Leonard Hayflick developed the concept while at the Wistar Institute in Philadelphia, Pennsylvania, in 1965. In his 1974 book Intrinsic Mutagenesis, Frank Macfarlane Burnet named the concept after Hayflick. The concept of the Hayflick Limit helped scientists study the effects of cellular aging on human populations from embryonic development to death, including the discovery of the effects of shortening repetitive sequences of DNA, called telomeres, on the ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol Greider received the Nobel Prize in Physiology or Medicine in 2009 for their work on genetic structures related to the Hayflick Limit.

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Subscribe to Cell Proliferation