Congenital rubella syndrome (CRS) can occur in children whose mothers contracted the rubella virus, sometimes called German measles, during pregnancy. Depending on the gestational period when the mother contracts rubella, an infant born with CRS may be unaffected by the virus or it may have severe developmental defects. The most severe effects of the virus on fetal development occur when the mother contracts rubella between conception and the first trimester. Defects from maternal rubella in the first trimester are included in the term congenital rubella syndrome, but physicians and researchers specifically refer to those defects as rubella embryopathy. Developmental defects are less severe if the mother contracts rubella in the second trimester, and they are generally negligible if the infection occurs in the third trimester. Prenatal rubella infection can cause birth defects which include deafness, compromised vision, abnormal heart development, and damage to the central nervous system which can lead to compromised cognition and learning disabilities.

Julia Bell worked in twentieth-century Britain, discovered Fragile X Syndrome, and helped find heritable elements of other developmental and genetic disorders. Bell also wrote much of the five volume Treasury of Human Inheritance, a collection about genetics and genetic disorders. Bell researched until late in life, authoring an original research article on the effects of the rubella virus of fetal development (Congenital Rubella Syndrome) at the age of 80.

In a clinical trial from 1969 to 1972, Sir Graham Collingwood Liggins and Ross Howie showed that if doctors treat pregnant women with corticosteroids before those women deliver prematurely, then those women's infants have fewer cases of respiratory distress syndrome than do similarly premature infants of women not treated with corticosteroids. Prior to the study, premature infants born before 32 weeks of gestation often died of respiratory distress syndrome, or the inability to inflate immature lungs. Liggins and Howie, then both at the University of Auckland in Auckland, New Zealand, published their results in A Controlled Trial of Antepartum Glucorticoid Treatment for Prevention of the Respiratory Distress Syndrome in Premature Infants in 1972. The study built on experiments Liggins had earlier conducted with sheep. Liggins' corticosteroid experiments changed the way doctors treated pregnant women experiencing preterm labors, and they improved the life expectancy of prematurely born infants.

Dell Publishing in New York City, New York, published Lennart Nilsson's A Child Is Born in 1966. The book was a translation of the Swedish version called Ett barn blir till, published in 1965. It sold over a million copies in its first edition, and has translations in twelve languages. Nilsson, a photojournalist, documented a nine-month human pregnancy using pictures and accompanying text written by doctors Axel Ingelman-Sundberg, Claes Wirsen and translated by Britt and Claes Wirsen and Annabelle MacMillian. Critics lauded A Child Is Born for its photographs taken in utero of a developing fetus. Furthermore, the work received additional praise for what many described as simple and scientifically accurate explanations of complicated processes during development.

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment begins within the first three months of the newborn's life. In the early 1970s, regions in Canada and the US had implemented screening programs to diagnose and treat CH as quickly as possible after the infant's birth. By 1991 many other countries had adopted the early screening program, and Fisher estimated that 10 to 12 million newborns per year were tested in the early 1990s. The screening programs, along with physician education and improved screening techniques, such as radioimmunoassay, helped significantly reduce the incidence of abnormal newborn development resulting from untreated congenital hypothyroidism.

In Australia in the 1940s, Norman McAlister Gregg observed a connection between pregnant women who contracted the rubella virus, or German measles, and cataract formation in their children's eyes. Gregg published his findings in the 1941 article Congenital Cataract following German Measles in the Mother in Transactions of the Ophthalmological Society of Australia. In the article, Gregg analyzed seventy-eight cases of congenital cataracts and suggested that the mothers' environmental factors could cause birth defects, otherwise known as teratogenic effects. Gregg's paper on the teratogenic effects of an environmental agent, the rubella virus, changed the study of birth defects to include viruses as potential causes or teratogens.

Anencephaly is an open neural tube defect, meaning that part of the neural tube does not properly close or that it has reopened during early embryogenesis. An embryo with anencephaly develops without the top of the skull, but retains a partial skull, including the face. Anencephaly is one of the most common birth defects of the neural tube, occurring at a rate of approximately one in one thousand human pregnancies. The condition can be caused by environmental exposure to chemicals, dietary deficiencies, or genetic mutations.

Johann Friedrich Meckel and Antoine Etienne Reynaud Augustin Serres developed in the early 1800s the basic principles of what later became called the Meckel-Serres Law. Meckel and Serres both argued that fetal deformities result when development prematurely stops, and they argued that these arrests characterized lower life forms, through which higher order organisms progress during normal development. The concept that the embryos of higher order organisms progress through successive stages in which they resemble lower level forms is called recapitulation. Meckel, a professor of anatomy at the University of Halle in Halle, Germany, and Serres, a physician at Hotel-Dieu de Paris in Paris, France, did not work together. Rather, in the late nineteenth and early twentieth centuries, their similar approaches, in which they compared the anatomy and embryos of different species so as to relate stages of embryonic development to the scala naturae, led oher scientists to generalize their individual concepts into one general theory. The recapitulation ideas of Meckel and Serres became part of the mid-eighteenth century debate about how to explain morphological similarities between species.

Body Worlds is an exhibition featuring plastinates, human bodies that have been preserved using a plastination process. First displayed in 1995 in Tokyo, Japan, this collection of anatomical specimens has since been displayed around the world. Although the exhibition debuted in Japan, the idea for the displays began at Heidelberg University in Heidelberg, Germany, where anatomist Gunther von Hagens invented a technique for plastination in the 1970s. After years of research and small-scale presentations of his work, von Hagens created Body Worlds, or Korperwelten in German. The attraction, which has been viewed by greater than 25 million people, has spread the study of anatomy into the public realm, making it possible for many to see inside an actual human body. Body Worlds has shown plastinated human embryos and fetuses.

Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a technique that Cantor subsequently used to describe nucleotide sequences of DNA, a process called sequencing, in humans. Cantor was the principal scientist for the Human Genome Project, for which scientists sequenced the entirety of the human genome in 2003. Afterwards, Cantor became the chief scientific officer for Sequenom Inc., a company that provided non-invasive prenatal genetic testing. Such tests use a pregnant woman's blood to identify genetic mutations in a fetus during the first trimester of pregnancy.

Subscribe to fetal development