Search

Displaying 26 - 50 of 141 items.

Oliver Allison Ryder III (1946– )

Oliver Allison Ryder studied chromosomal evolution and endangered species in efforts for wildlife conservation and preservation at the San Diego Zoo in San Diego, California. Throughout his career, Ryder studied breeding patterns of endangered species. He collected and preserved cells, tissues, and DNA from endangered and extinct species to store in the San Diego Frozen Zoo, a center for genetic research and development in San Diego, California.

Format: Articles

Subject: People

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

Mechanistic Realization of the Turtle Shell

Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.

Format: Articles

Subject: Processes

Ernst Heinrich Philipp August Haeckel (1834-1919)

Ernst Heinrich Philipp August Haeckel was a prominent comparative anatomist and active lecturer in the late nineteenth and early twentieth centuries. He is most well known for his descriptions of phylogenetic trees, studies of radiolarians, and illustrations of vertebrate embryos to support his biogenetic law and Darwin's work with evolution. Haeckel aggressively argued that the development of an embryo repeats or recapitulates the progressive stages of lower life forms and that by studying embryonic development one could thus study the evolutionary history of life on earth.

Format: Articles

Subject: People

Amniocentesis Prior to 1980

The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.

Format: Articles

Subject: Processes, Reproduction

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

Etienne Geoffroy Saint-Hilaire (1772-1844)

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms.

Format: Articles

Subject: People

Brian K. Hall (1941- )

Brian Hall is the son of Doris Garrad and Harry Hall, and was born in Port Kembla, NSW Australia, on 28 October 1941. He attended the University of New England in Armidale NSW, graduating in 1963 with a BSc in zoology, in 1965 with a BSc (Honors) in zoology, and in 1968 with a PhD in zoology. His PhD thesis, undertaken under the supervision of Patrick D. F. Murray, FAA was on the differentiation of bone and secondary cartilage in chicken embryos.

Format: Articles

Subject: People

Dissertation: Lessons from Embryos: Haeckel’s Embryo Drawings, Evolution, and Secondary Biology Textbooks

Haeckel believed that the development of an embryo revealed the adult stages of the organism’s ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel’s embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel’s embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids.

Format: Essays and Theses

Subject: Publications, People

VACTERL Association

VACTERL association is a term applied to a specific group of abnormalities involving structures derived from the mesoderm. Although the defects of this disorder are clearly linked, VACTERL is called an association rather than a syndrome because the exact genetic cause is unknown. "VACTERL" is an acronym, each letter standing for one of the defects associated with the condition: V for vertebral anomalies, A for anal atresia, C for cardiovascular anomalies, T for tracheoesophageal fistula, E for esophageal atresia, R for renal anomalies, and L for limb defects.

Format: Articles

Subject: Disorders

Embryonic Sex Differentiation and Sex Hormones (1947), by Carl R. Moore

In 1947, Carl Richard Moore, a researcher at the University of Chicago, in Chicago, Illinois, wrote Embryonic Sex Differentiation and Sex Hormones, which was published in the same year as a first-edition monograph. In the book, Moore argues that regulation of sex differentiation in mammals is not controlled by sex hormones secreted by embryonic sex organs (gonads), but is controlled by non-hormonal genetic factors.

Format: Articles

Subject: Publications, Experiments

Purkinje Cells

Purkinje cells, also called Purkinje neurons, are neurons in vertebrate animals located in the cerebellar cortex of the brain. Purkinje cell bodies are shaped like a flask and have many threadlike extensions called dendrites, which receive impulses from other neurons called granule cells. Each cell also has a single projection called an axon, which transmits impulses to the part of the brain that controls movement, the cerebellum. Purkinje cells are inhibitory neurons: they secrete neurotransmitters that bind to receptors that inhibit or reduce the firing of other neurons.

Format: Articles

Subject: Theories

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

Christiane Nusslein-Volhard (1942- )

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B.

Format: Articles

Subject: People

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

Ilya Ilyich Mechnikov (Elie Metchnikoff) (1845-1916)

Ilya Ilyich Mechnikov studied phagocytes, immune function, and starfish embryos in Europe during the late nineteenth and early twentieth centuries. Mechnikov adopted the French form of his name, Élie Metchnikoff, in the last twenty-five years of his life. In 1908, he won the Nobel Prize in Physiology or Medicine with Paul Ehrlich for their contributions to immunology. Mechnikov discovered phagocytes, immune cells that protect organisms by ingesting foreign particles or microorganisms, by conducting experiments on starfish larvae.

Format: Articles

Subject: People

Walter Jakob Gehring (1939-2014)

Walter Jakob Gehring discovered the homeobox, a DNA segment found in a specific cluster of genes that determine the body plan of animals, plants, and fungi. Gehring identified the homeobox in 1983, with the help of colleagues while isolating the Antennapedia (Antp) gene in fruit flies (Drosophila) at the University of Basel in Basel, Switzerland. Hox genes, a family of genes that have the homeobox, determine the head-to-tail (anterior-posterior) body axis of both vertebrates and invertebrates.

Format: Articles

Subject: People

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

“Revival of Spermatozoa after Dehydration and Vitrification at Low Temperatures” (1949), by Christopher Polge, Audrey Ursula Smith, and Alan Sterling Parkes

In the 1949 article “Revival of Spermatozoa after Dehydration and Vitrification at Low Temperatures,” researchers Christopher Polge, Audrey Ursula Smith, and Alan Sterling Parkes demonstrated that glycerol prevents cells from dying while being frozen. Polge and his colleagues discussed several procedures in which they had treated sperm cells from various species with glycerol, froze those cells, and then observed the physiological effects that freezing had on the treated sperm. The researchers concluded that glycerol safely preserves sperm samples from a variety of species.

Format: Articles

Subject: Publications

Ernest John Christopher Polge (1926-2006)

Twentieth-century researcher Ernest John Christopher Polge studied the reproductive processes of livestock and determined a method to successfully freeze, thaw, and utilize viable sperm cells to produce offspring in animals. In 1949, Polge identified glycerol as a cryoprotectant, or a medium that enables cells to freeze without damaging their cellular components or functions. Several years later, Polge used glycerol in a freezing process called vitrification, which enabled him to freeze poultry sperm, thaw that sperm, and use it to fertilize vertebrate embryos.

Format: Articles

Subject: People

David Edwin Wildt (1950- )

David Edwin Wildt developed and applied assisted reproductive technologies to conserve rare and endangered wildlife species in the US during the twentieth and twenty-first centuries. He advocated genome resource banks to help preserve biodiversity, and he advocated for practical ethics to guide wildlife reproductive biologists when they use technology and environmental planning. Wildt often focused on the cheetah (Acinonyx jubatus), but he researched greater than fifty vertebrate species.

Format: Articles

Subject: People