Search

Displaying 1 - 25 of 84 items.

Pages

Robert Geoffrey Edwards's Study of Fertilization of Human Oocytes Matured in vitro, 1965 to 1969

Robert Geoffrey Edwards, a British developmental biologist at University of Cambridge, began exploring human in vitro fertilization (IVF) as a way to treat infertility in 1960. After successfully overcoming the problem of making mammalian oocytes mature in vitro in 1965, Edwards began to experiment with fertilizing matured eggs in vitro. Collaborating with other researchers, Edwards eventually fertilized a human egg in vitro in 1969. This was a huge step towards establishing human IVF as a viable fertility treatment.

Format: Articles

Subject: Experiments, Reproduction

Hwang Woo-suk's Use of Human Eggs for Research 2002-2005

Hwang Woo-suk, a geneticist in South Korea, claimed in Science magazine in 2004 and 2005 that he and a team of researchers had for the first time cloned a human embryo and that they had derived eleven stem cell lines from it. Hwang was a professor at Seoul National University in Seoul, South Korea. In the Science articles, Hwang stated that all of the women who donated eggs to his laboratory were volunteers who donated their eggs (oocytes) without receiving any compensation in return. In 2006, Hwang admitted that many of the results were fabricated.

Format: Articles

Subject: Legal, Ethics, Reproduction

Robert Geoffrey Edwards's Study of in vitro Mammalian Oocyte Maturation, 1960 to 1965

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and timings for in vitro (out of the body) maturation of oocytes from diverse mammals including mice, rats, hamsters, pigs, cows, sheep, and rhesus monkeys, as well as humans.

Format: Articles

Subject: Experiments, Reproduction

Intracytoplasmic Sperm Injection

Intracytoplasmic Sperm Injection (ICSI) is an assisted reproductive technique (ART) initially developed by Dr. Gianpiero D. Palermo in 1993 to treat male infertility. It is most commonly used in conjunction with in vitro fertilization (IVF) or a less commonly used technique called zygote intrafallopian transfer (ZIFT). In natural fertilization, the sperm must penetrate the surface of the female egg, or oocyte.

Format: Articles

Subject: Technologies, Reproduction

Zygote Intrafallopian Transfer

Zygote intrafallopian transfer (ZIFT) is an assisted reproductive technology (ART) first used in 1986 to help those who are infertile conceive a child. ZIFT is a hybrid technique derived from a combination of in vitro fertilization (IVF) and gamete intrafallopian transfer (GIFT) procedures. Despite a relatively high success rate close to that of IVF, it is not as common as its parent procedures due to its costs and more invasive techniques.

Format: Articles

Subject: Technologies, Reproduction

Shoukhrat Mitalipov and Masahito Tachibana's Mitochondrial Gene Replacement Therapy Technique

In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.

Format: Articles

Subject: Technologies

China's First Baby Conceived through In Vitro Fertilization-Embryonic Transfer, by Zhang Lizhu's Research Team

On 10 March 1988, China's first baby conceived through human in vitro fertilization (IVF) and embryo transfer (ET), commonly referred to as a test-tube baby, was born at the Peking Hospital (PUTH) in Beijing. This birth was reported in numerous media reports as a huge step forward in China's long march to keep pace with global advances in science and technology. Led by gynecologist Zhang Lizhu, the PUTH research team had devoted more than four years to the human IVF-ET project.

Format: Articles

Subject: Experiments, Reproduction

In Vitro Fertilization

In vitro fertilization (IVF) is an assisted reproductive technology (ART) initially introduced by Patrick Steptoe and Robert Edwards in the 1970s to treat female infertility caused by damaged or blocked fallopian tubes. This major breakthrough in embryo research has provided large numbers of women the possibility of becoming pregnant, and subsequent advances have dramatically increased their chances. IVF is a laboratory procedure in which sperm and egg are fertilized outside the body; the term "in vitro" is Latin for "in glass."

Format: Articles

Subject: Technologies, Reproduction

Assisted Reproductive Technologies

Assisted reproductive technologies (ART) are a collection of different techniques designed to help those who are infertile achieve a successful pregnancy. The most popular technology currently in use is in vitro fertilization (IVF), but others include gamete intrafallopian transfer (GIFT), zygote intrafallopian transfer (ZIFT), intrauterine insemination (IUI), and intracytoplasmic sperm injection (ICSI).

Format: Articles

Subject: Technologies, Reproduction

Ectopic Pregnancy

Many difficulties can arise with a pregnancy even after the sperm successfully fertilizes the oocyte. A major problem occurs if the fertilized egg tries to implant before reaching its normal implantation site, the uterus. An ectopic pregnancy occurs when a fertilized egg implants anywhere other than in the uterus, most commonly in the fallopian tubes. Ectopic pregnancies cannot continue to term, so a physician must remove the developing embryo as early as possible.

Format: Articles

Subject: Disorders, Processes, Reproduction

Robert Geoffrey Edwards and Patrick Christopher Steptoe's Clinical Research in Human in vitro Fertilization and Embryo Transfer, 1969-1980

The biomedical accomplishment of human in vitro fertilization and embryo transfer (IVF-ET) took years to become the successful technique that presently enables infertile couples to have their own children. In 1969, more than ten years after the first attempts to treat infertilities with IVF technologies, the British developmental biologist Robert Geoffrey Edwards fertilized human oocytes in a Petri dish for the first time.

Format: Articles

Subject: Experiments, Reproduction

Jan Evangelista Purkyne (1787-1869)

Jan Evangelista Purkyne, also called Johannes or Johann Evangelist Purkinje, studied cells in the cerebellum, fibers of the heart, subjective visual phenomenon, and germinal vesicle, in eastern Europe during the early nineteenth century. His investigations provided insights into various mechanisms and structures of the human body. Purkyne introduced techniques for decalcification of bones and teeth, embedding of tissue specimens, and eye examinations.

Format: Articles

Subject: People

Margaret Ann Bulkley (James Barry) (1789−1865)

Margaret Ann Bulkley, under the male pseudonym James Barry, was one of the first female obstetricians in early nineteenth century British Empire. She was the first person to perform a cesarean section in South Africa. Cesarean section is a procedure in which a doctor cuts into the uterus of a pregnant woman to retrieve the fetus during complicated births. Bulkley hid her gender and lived life as the male Barry to practice medicine, an opportunity not allowed to women at the time.

Format: Articles

Subject: People

Shoukhrat Mitalipov and Masahito Tachibana’s Mitochondrial Gene Replacement in Primate Offspring and Embryonic Stem Cells (2009)

Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers replaced the mitochondrial genes of primate embryonic stem cells via spindle transfer. Spindle replacement, also called spindle transfer, is the process of removing the genetic material found in the nucleus of one egg cell, or oocyte, and placing it in another egg that had its nucleus removed. Mitochondria are organelles found in all cells and contain some of the cell’s genetic material. Mutations in the mitochondrial DNA can lead to neurodegenerative and muscle diseases.

Format: Articles

Subject: Experiments

Mitochondria

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.

Format: Articles

Subject: Organisms, Theories

"The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis" (2002), by James M. Cummins

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA).

Format: Articles

Subject: Publications

Zhang Lizhu (1921- )

Zhang Lizhu is a Chinese gynecologist and researcher. For most of her career, she worked in the Peking Medical College Third Hospital, renamed in 2000, Peking University Third Hospital. There, she led a team of researchers and physicians in the study of human in vitro fertilization (IVF) and embryo transfer (ET) technology. Zhang and her colleagues contributed to the birth of the first test-tube baby in Mainland China in 1988.

Format: Articles

Subject: People, Reproduction

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

Ooplasmic Transfer Technology

Ooplasmic transfer, also called cytoplasmic transfer, is an outside the body, in vitro fertilization (IVF) technique. Ooplasmic transfer in humans (Homo sapiens) is similar to in vitro fertilization (IVF), with a few additions. IVF is the process in which doctors manually combine an egg and sperm cells in a laboratory dish, as opposed to artificial insemination, which takes place in the female's body. For ooplasmic transfer, doctors withdraw cytoplasm from a donor's oocyte, and then they inject that cytoplasm with sperm into a patient's oocyte.

Format: Articles

Subject: Technologies

Andrew Francis Dixon (1868-1936)

Andrew Francis Dixon studied human anatomy and egg cells at the turn of the twentieth century in Ireland and Great Britain. Dixon studied the sensory and motor nervous system of the face, the cancellous bone tissue of the femur, supernumerary kidneys, and the urogenital system. In 1927 Dixon described a mature human ovarian follicle. This follicle, Dixon noted, contained an immature human egg cell (oocyte) with a visible first polar body and the beginnings of the second polar body.

Format: Articles

Subject: People

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories

"Viable Offspring Derived from Fetal and Adult Mammalian Cells" (1997), by Ian Wilmut et al.

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments resulted in several sheep being born in July 1996, one of which was a sheep named Dolly born 5 July 1996.

Format: Articles

Subject: Experiments

"Mitochondrial DNA and Human Evolution" (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson

In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria.

Format: Articles

Subject: Publications, Theories

Interspecies SCNT-derived Humanesque Blastocysts

Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research.

Format: Articles

Subject: Theories

"Sheep Cloned by Nuclear Transfer from a Cultured Cell Line" (1996), by Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut

In 1995 and 1996, researchers at the Roslin Institute in Edinburgh, Scotland, cloned mammals for the first time. Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut cloned two sheep, Megan and Morag, using sheep embryo cells. The experiments indicated how to reprogram nuclei from differentiated cells to produce live offspring, and that a single population of differentiated cells could produce multiple offspring. They reported their results in the article 'Sheep Cloned by Nuclear Transfer from a Cultured Cell Line' in March 1996.

Format: Articles

Subject: Experiments

Pages