Search

Displaying 1 - 6 of 6 items.

Mechanism of Notch Signaling

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

Jelly Fish and Green Fluorescent Protein

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Format: Graphics

Subject: Theories, Processes, Organisms, Technologies

Chloroplasts

Chloroplasts are the organelles in plant and algal cells that conduct photosynthesis. A single chloroplast has an outer membrane and an inner membrane, with an intermembrane space in between. Within the inner membrane, interconnected stacks of thylakoids, called granum, float in a protein rich fluid called the stroma. These thylakoid stacks contain chlorophyll, a pigment which converts sunlight into usable energy for plants and free oxygen from water. The stacks are sites of light reactions within a plant cell.

Format: Graphics

Subject: Theories, Processes

Rh Incompatibility in Pregnancy

Rh factor is a protein found on the outside of Rh-positive red blood cells. Rh incompatibility during pregnancy occurs when an Rh-negative mother is pregnant with an Rh-positive fetus. During delivery, the fetus' Rh-positive blood is introduced into the mother’s body. The Rh-negative mother’s body begins to produce antibodies that attack and kill Rh-positive blood cells. Since the crossover of blood normally occurs during delivery, an Rh-negative woman’s first pregnancy is normally not affected.

Format: Graphics

Subject: Processes

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Beadle's One Gene-One Enzyme Hypothesis

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes