Search
Somatic Cell Nuclear Transfer in Mammals (1938-2013)
In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists
Format: Articles
Subject: Theories, Technologies, Processes
Shoukhrat Mitalipov and Masahito Tachibana's Mitochondrial Gene Replacement Therapy Technique
In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations.
Format: Articles
Subject: Technologies
Ethics and Induced Pluripotent Stem Cells
The recent development of induced pluripotent stem cells (iPSCs) and related technologies has caught the attention of scientists, activists, politicians, and ethicists alike. IPSCs gained immediate international attention for their apparent similarity to embryonic stem cells after their successful creation in 2006 by Shinya Yamanaka and in 2007 by James Thompson and others.
Format: Articles
Subject: Technologies, Ethics
ABO Blood Type Identification and Forensic Science (1900-1960)
The use of blood in forensic analysis is a method for identifying individuals suspected of committing some kinds of crimes. Paul Uhlenhuth and Karl Landsteiner, two scientists working separately in Germany in the early twentieth century, showed that there are differences in blood between individuals. Uhlenhuth developed a technique to identify the existence of antibodies, and Landsteiner and his students showed that humans had distinctly different blood types called A, B, AB, and O.
Format: Articles
Subject: Theories, Legal, Technologies
HeLa Cell Line
The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans.
Format: Articles
Subject: Technologies, Experiments, People, Ethics