Search

Displaying 76 - 100 of 141 items.

"Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro" (1932), by Conrad Hal Waddington

Conrad Hal Waddington's "Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro," published in 1932 in Philosophical Transactions of the Royal Society of London, Series B, compares the differences in the development of birds and amphibians. Previous experiments focused on the self differentiation of individual tissues in birds, but Waddington wanted to study induction in greater detail. The limit to these studies had been the amount of time an embryo could be successfully cultivated ex vivo.

Format: Articles

Subject: Experiments

"Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves" (1907), by Ross Granville Harrison

In his 1907 paper, "Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves," in the Journal of Experimental Zoology that he edited, Ross Granville Harrison tested the development of nerves in transplanted tissue. He studied neural development by examining two competing theories. Victor Hensen proposed a syncytial theory as a way to explain neural development, suggesting that all the nerves of an embryo were connected directly by cytoplasm laid down early in development, and leaving no room for later modification.

Format: Articles

Subject: Experiments

Barbara McClintock's Transposon Experiments in Maize (1931–1951)

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes.

Format: Articles

Subject: Experiments

Elizabeth Blackburn, Carol Greider and Jack Szostak's Telomere and Telomerase Experiments (1982-1989)

Experiments conducted by Elizabeth Blackburn, Carol Greider, and Jack Szostak from 1982 to 1989 provided theories of how the ends of chromosomes, called telomeres, and the enzyme that repairs telomeres, called telomerase, worked. The experiments took place at the Sidney Farber Cancer Institute and at Harvard Medical School in Boston, Massachusetts, and at the University of California in Berkeley, California. For their research on telomeres and telomerase, Blackburn, Greider, and Szostak received the Nobel Prize in Physiology or Medicine in 2009.

Format: Articles

Subject: Experiments

The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.

Format: Articles

Subject: Processes, Experiments

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

"Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs" (1975), by John Gurdon, Ronald Laskey, and O. Raymond Reeves

In 1975 John Gurdon, Ronald Laskey, and O. Raymond Reeves published "Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs," in the Journal of Embryology and Experimental Morphology. Their article was the capstone of a series of experiments performed by Gurdon during his time at Oxford and Cambridge, using the frog species Xenopus laevis. Gurdon's first experiment in 1958 showed that the nuclei of Xenopus cells maintained their ability to direct normal development when transplanted.

Format: Articles

Subject: Experiments, Publications

Nicole Le Douarin and Charles Ordahl's Experiments on the Developmental Lineages of Somites

Through various studies developmental biologists have been able to determine that the muscles of the back, ribs, and limbs derive from somites. Somites are blocks of cells that contain distinct sections that diverge into specific types (axial or limb) of musculature and are an essential part of early vertebrate development. For many years the musculature of vertebrates was known to derive from the somites, but the exact developmental lineage of axial and limb muscle progenitor cells remained a mystery until Nicole Le Douarin and Charles P.

Format: Articles

Subject: Experiments

"The Potency of the First Two Cleavage Cells in Echinoderm Development. Experimental Production of Partial and Double Formations" (1891-1892), by Hans Driesch

Hans Adolf Eduard Driesch was a late-nineteenth and early-twentieth century philosopher and developmental biologist. In the spring of 1891 Driesch performed experiments using two-celled sea urchin embryos, the results of which challenged the then-accepted understanding of embryo development. Driesch showed that the cells of an early embryo, when separated, could each continue to develop into normal larval forms.

Format: Articles

Subject: Experiments, Publications

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

"On the Nature of the Process of Fertilization and the Artificial Production of Normal Larvae (Plutei) From the Unfertilized Eggs of the Sea Urchin" (1899), by Jacques Loeb

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments.

Format: Articles

Subject: Experiments

"β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis" (2007), by Kyle A. Gurley, Jochen C. Rink, and Alejandro Sánchez Alvarado

Alejandro Sánchez Alvarado's laboratory group has employed molecular tools to investigate old questions about regeneration and as a result have identified some of the molecular mechanisms determining polarity. Recent work by his group has shown Wnt-β-catenin signaling determines whether a tail or a head will form during regeneration in planarians. This study was motivated by work Thomas Hunt Morgan conducted in the late nineteenth century.

Format: Articles

Subject: Experiments

"The Outgrowth of the Nerve Fiber as a Mode of Protoplasmic Movement" (1910), by Ross Granville Harrison

In "The Outgrowth of the Nerve Fiber as a Mode of Protoplasmic Movement," Ross Granville Harrison explores the growth of nerve fibers in vitro. The purpose of this experiment was to test two possible hypotheses for the growth of nerve fibers. Santiago Ramón y Cajal suggested that nerve growth is due to the extension of nerve fibers as they push through tissue. Victor Hensen's syncytial theory proposed an opposing view of nerve growth.

Format: Articles

Subject: Experiments

"Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization" (1901), by Jacques Loeb

Jacques Loeb showed that scientists could achieve artificial parthenogenesis with some types of annelid worm eggs through a series of experiments in 1900. Loeb published the results of his experiments in 1901 as "Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization," in The American Journal of Physiology. Loeb 's results broadened the range of animals to which artificial parthenogenesis applied beyond sea urchins.

Format: Articles

Subject: Experiments

"Purification of a Nerve-Growth Promoting Protein from the Mouse Salivary Gland and its Neuro-Cytoxic Antiserum" (1960), by Stanley Cohen

Stanley Cohen published "Purification of a Nerve-Growth Promoting Protein from the Mouse Salivary Gland and its Neuro-Cytoxic Antiserum" in the Proceedings of the National Academies of Sciences in 1960. This paper outlined the successful purification and identification of nerve growth factor (NGF) as a protein, the developmental effects of depriving an embryo of NGF, and the discovery that NGF is also required for the maintenance of the nervous system.

Format: Articles

Subject: Experiments

"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" (1952), by Robert Briggs and Thomas J. King

In 1952 Robert Briggs and Thomas J. King published their article, "Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs," in the Proceedings of the National Academy of Sciences, the culmination of a series of experiments conducted at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia, Pennsylvania. In this paper Briggs and King examined whether nuclei of embryonic cells are differentiated, and by doing so, were the first to conduct a successful nuclear transplantation with amphibian embryos.

Format: Articles

Subject: Experiments

"Presence of Fetal DNA in Maternal Plasma and Serum" (1997), by Dennis Lo, et al.

In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes.

Format: Articles

Subject: Experiments

"The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos" (1934), by Viktor Hamburger

German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in his 1934 paper, "The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos," published in The Journal of Experimental Zoology.

Format: Articles

Subject: Publications, Experiments

James Edgar Till (1931– )

James Edgar Till is a biophysicist known for establishing the existence of stem cells along with Ernest McCulloch in 1963. Stem cells are undifferentiated cells that can shift, or differentiate, into specialized types of cells and serve as a repair system in the body by dividing indefinitely to replenish other cells. Till’s work with stem cells in bone marrow, which produces the body’s blood cells, helped form the field of modern hematology, a medical discipline that focuses on diseases related to the blood.

Format: Articles

Subject: People, Experiments, Technologies

Sonja Vernes, et al.'s Experiments On the Gene Networks Affected by the Foxp2 Protein (2011)

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in the development of neurons, or nerve cells. Their results confirmed that Foxp2 affected the development of gene networks involved in the growth of neurons, as well as networks that are involved in cell specialization and cell communication.

Format: Articles

Subject: Experiments

Hox Genes and the Evolution of Vertebrate Axial Morphology Experiment (1995)

In 1995, researchers Ann Burke, Craig Nelson, Bruce Morgan, and Cliff Tabin in the US studied the genes that regulate the construction of vertebra in developing chick and mouse embryos, they showed similar patterns of gene regulation across both species, and they concluded that those patterns were inherited from an ancestor common to all vertebrate animals. The group analyzed the head-to-tail (anterior-posterior) axial development of vertebrates, as the anterior-posterior axis showed variation between species over the course of evolutionary time.

Format: Articles

Subject: Experiments

"Congenital Club Foot in the Human Fetus" (1980), by Ernesto Ippolito and Ignacio Ponseti

In 1980, Ernesto Ippolito and Ignacio Ponseti published their results on a histological study they performed on congenital club foot in human fetuses. The researchers examined the feet of four aborted fetuses and compared the skeletal tissues from healthy feet to those affected by congenital club foot. Infants born with club foot are born with one or both feet rigidly twisted inwards and upwards, making typical movement painful and challenging.

Format: Articles

Subject: Experiments

“Sex Limited Inheritance in Drosophila” (1910), by Thomas Hunt Morgan

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males.

Format: Articles

Subject: Experiments, Publications

"Programmed Cell Death-II. Endocrine Potentiation of the Breakdown of the Intersegmental Muscles of Silkmoths" (1964), by Richard A. Lockshin and Carroll M. Williams

Richard A. Lockshin's 1963 PhD dissertation on cell death in insect metamorphosis was conducted under the supervision of Harvard insect physiologist Carroll M. Williams. Lockshin and Williams used this doctoral research as the basis for five articles, with the main title "Programmed Cell Death," that were published between 1964 and 1965 in the Journal of Insect Physiology. These articles examine the cytological processes, neuronal and endocrinal controls, and the influence of drugs on the mechanism of cell death observed in pupal muscle structures of the American silkmoth.

Format: Articles

Subject: Experiments, Publications

"Genetic Evidence Equating SRY and the Testis-Determining Factor" (1990), by Phillippe Berta et al.

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was the gene on the Y chromosome responsible for encoding the testis-determining factor (TDF) protein. The TDF is a protein that initiates embryo to develop male characteristics.

Format: Articles

Subject: Experiments