Search
Filter by Topic
- People (190) Apply People filter
- Reproduction (118) Apply Reproduction filter
- Publications (116) Apply Publications filter
- Experiments (103) Apply Experiments filter
- Processes (93) Apply Processes filter
- Theories (76) Apply Theories filter
- Technologies (71) Apply Technologies filter
- Disorders (64) Apply Disorders filter
- Legal (35) Apply Legal filter
- Ethics (30) Apply Ethics filter
- Organizations (25) Apply Organizations filter
- Organisms (17) Apply Organisms filter
- Outreach (12) Apply Outreach filter
- Religion (3) Apply Religion filter
- Places (2) Apply Places filter
- DNA (1) Apply DNA filter
- Publication (1) Apply Publication filter
- Reproductive Health Arizona (1) Apply Reproductive Health Arizona filter
"The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos" (1934), by Viktor Hamburger
German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in his 1934 paper, "The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos," published in The Journal of Experimental Zoology.
Format: Articles
Subject: Publications, Experiments
Karl Oskar Illmensee (1939–)
Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.
Format: Articles
Stanley Alan Plotkin (1932– )
Stanley Alan Plotkin developed vaccines in the United States during the mid to late twentieth century. Plotkin began his research career at the Wistar Institute in Philadelphia, Pennsylvania, where he studied the rubella virus. In pregnant women, the rubella virus caused congenital rubella syndrome in the fetus, which led to various malformations and birth defects. Using WI-38 cells, a line of cells that originated from tissues of aborted fetuses, Plotkin successfully created RA27/3, a weakened strain of the rubella virus, which he then used to develop a rubella vaccine.
Format: Articles
Subject: People
Congenital Vertebral Defects
The spinal column is the central structure in the vertebrate body from which stability, movement, and posture all derive. The vertebrae of the spine are organized into four regions (listed in order from cranial to caudal): cervical, thoracic, lumbar, and pelvic. These regions are classified by their differences in curvature. The human spine usually consists of thirty-three vertebrae, seven of which are cervical (C1-C7), twelve are thoracic (T1-T12), five are lumbar (L1-L5), and nine are pelvic (five fused as the sacrum and four fused as the coccyx).
Format: Articles
Subject: Disorders, Reproduction
"Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research" (2007), by the HFEA
To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007.
Format: Articles
Subject: Publications
The Germ-Plasm: a Theory of Heredity (1893), by August Weismann
Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
Format: Articles
Subject: Publications, Theories
"On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species" (1924), Hilde Mangold's Dissertation
Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg.
Format: Articles
Subject: Experiments, Publications
Ectoderm
Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.
Format: Articles
Subject: Processes
Thomas Joseph King Jr. (1921-2000)
Thomas Joseph King Jr. was a developmental biologist who, with fellow scientist Robert Briggs, pioneered a method of transplanting nuclei from blastula cells into fresh egg cells lacking nuclei. This method, dubbed nuclear transplantation, facilitated King's studies on cancer cell development. King's work was instrumental for the development of cloning of fish, insects, and mammals.
Format: Articles
Subject: People
Craig C. Mello (1960- )
Craig C. Mello is an American developmental biologist and Nobel Laureate, who helped discover RNA interference (RNAi). Along with his colleague Andrew Fire, he developed gene knockouts using RNAi. In 006 Mello won the Nobel Prize in Physiology or Medicine for his contribution. Mello also contributed to developmental biology, focusing on gene regulation, cell signaling, cleavage formation, germline determination, cell migration, cell fate differentiation, and morphogenesis.
Format: Articles
Subject: People
Intraspecies Chimeras Produced in Laboratory Settings (1960-1975)
When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes.
Format: Articles
“Survival of Mouse Embryos Frozen to -196 ° and -269 °C” (1972), by David Whittingham, Stanley Leibo, and Peter Mazur
In 1972, David Whittingham, Stanley Leibo, and Peter Mazur published the paper, “Survival of Mouse Embryos Frozen to -196 ° and -269 °C,” hereafter, “Survival of Mouse Embryos,” in the journal Science. The study marked one of the first times that researchers had successfully cryopreserved, or preserved and stored by freezing, a mammalian embryo and later transferred that embryo to a live mouse who gave birth to viable offspring. Previously, scientists had only been successful cryopreserving single cells, like red blood cells.
Format: Articles
Subject: Experiments, Publications
DNA and X and Y Chromosomes
Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.
Format: Graphics
"Experiments on Embryonic Induction III. A Note on Inductions by Chick Primitive Streak Transplanted to the Rabbit Embryo" (1934), by Conrad Hal Waddington
Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation.
Format: Articles
Subject: Experiments
Beadle's One Gene-One Enzyme Hypothesis
Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.
Format: Graphics
The Role of the Notch Signaling Pathway in Myogenesis
Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.
Format: Articles
Life's Greatest Miracle (2001), by Julia Cort and NOVA
The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was first aired 20 November 2001. The program was written and produced by Julia Cort and features images by renowned Swedish photographer Lennart Nilsson.
Format: Articles
Subject: Outreach, Reproduction
Cornelia Isabella Bargmann (1961- )
Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar.
Format: Articles
Subject: People
Eric Wieschaus (1947- )
Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine.
Format: Articles
Subject: People
Tay-Sachs Disease
In 1881 British opthalmologist Warren Tay made an unusual observation. He reported a cherry-red spot on the retina of a one-year-old patient, a patient who was also showing signs of progressive degeneration of the central nervous system as manifested in the child's physical and mental retardation. This cherry-red spot is a characteristic that would eventually come to be associated with metabolic neurological disorders like Sandhoff, GM-1, Niemann-Pick, and, to the credit of Tay, the lysosomal storage disorder known as Tay-Sachs disease.
Format: Articles
Subject: Disorders
Developmental Timeline of Alcohol-Induced Birth Defects
Maternal consumption of alcohol (ethanol) during pregnancy can result in a continuum of embryonic developmental abnormalities that vary depending on the severity, duration, and frequency of exposure of ethanol during gestation. Alcohol is a teratogen, an environmental agent that impacts the normal development of an embryo or fetus. In addition to dose-related concerns, factors such as maternal genetics and metabolism and the timing of alcohol exposure during prenatal development also impact alcohol-related birth defects.
Format: Articles
Subject: Disorders, Reproduction
In the Womb (2005), by Toby Mcdonald and National Geographic Channel
Written, produced, and directed by Toby Mcdonald, the 2005 National Geographic Channel film In the Womb uses the most recent technology to provide an intricate glimpse into the prenatal world. The technologies used, which include advanced photography, computer graphics, and 4-D ultrasound imaging, help to realistically illustrate the process of development and to answer questions about the rarely seen development of a human being.
Format: Articles
Subject: Outreach, Reproduction
"Formation of Genetically Mosaic Mouse Embryos and Early Development of Lethal (t12/t12)-Normal Mosaics" (1964), by Beatrice Mintz
The paper "Formation of Genetically Mosaic Mouse Embryos and Early Development of Lethal (t12/t12)-Normal Mosaics," by Beatrice Mintz, describes a technique to fuse two mouse embryos into a single embryo. This work was published in the Journal of Experimental Zoology in 1964. When two embryos are correctly joined before the 32-cell stage, the embryo will develop normally and exhibit a mosaic pattern of cells as an adult.
Format: Articles
Subject: Experiments
Tissue Engineering
Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.
Format: Articles
Subject: Processes
Golgi Staining Technique
The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells.
Format: Articles
Subject: Technologies, Processes