Search

Displaying 1 - 4 of 4 items.

A plant genetically modified that accumulates Pb is especially promising for phytoremediation (2003), by Carmina Gisbert et al.

In 2003, Carmina Gisbert and her research team produced a tobacco plant that could remove lead from soil. To do so, they inserted a gene from wheat plants that produces phytochelatin synthase into a shrub tobacco plant (Nicotiana glauca) to increase N. glauca's absorption and tolerance of toxic metals, particularly lead and cadmium. Gisbert and her team aimed to genetically modify a plant so that it could be used for phytoremediation- using plants to remove toxic substances from the soil.

Format: Articles

Subject: Experiments, Technologies

Thesis: How Purported Scientific Failures Have Led to Advancements in IVF

This thesis shows us the history of how some of the first attempts at IVF in humans using various options such as donated egg cells and cryopreserved embryos, often ended in early miscarriages. At that time, most members of the scientific community and general public responded to those trials by regarding them as insignificant. In 1998, the success rate of women under the age of 38 having children with the use of IVF was 22.1%. Over time, scientists began to acknowledge those published findings that detailed various “failed” human IVF experiments.

Format: Essays and Theses

Subject: Publications, Technologies, Experiments, Reproduction, Outreach

James Edgar Till (1931– )

James Edgar Till is a biophysicist known for establishing the existence of stem cells along with Ernest McCulloch in 1963. Stem cells are undifferentiated cells that can shift, or differentiate, into specialized types of cells and serve as a repair system in the body by dividing indefinitely to replenish other cells. Till’s work with stem cells in bone marrow, which produces the body’s blood cells, helped form the field of modern hematology, a medical discipline that focuses on diseases related to the blood.

Format: Articles

Subject: People, Experiments, Technologies

HeLa Cell Line

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans.

Format: Articles

Subject: Technologies, Experiments, People, Ethics