Search

Displaying 76 - 100 of 355 items.

Effects of Prenatal Alcohol Exposure on Central Nervous System Development

Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) is part of this group and was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities and defects of the central nervous system (CNS). The CNS is particularly vulnerable to the effects of ethanol during prenatal development.

Format: Articles

Subject: Disorders, Reproduction

The Effects of Diethylstilbestrol on Embryonic Development

Estrogen plays a key role in the regulation of gene transcription. This is accomplished by its ability to act as a ligand and to bind to specific estrogen receptor (ER) molecules, such as ERα and ERβ, which act as nuclear transcription factors. There are three major nuclear estrogen receptor protein domains: the estrogen binding domain, the protein interaction domain, and the DNA binding domain.

Format: Articles

Subject: Disorders

The Hershey-Chase Experiments (1952), by Alfred Hershey and Martha Chase

In 1951 and 1952, Alfred Hershey and Martha Chase conducted a series of experiments at the Carnegie Institute of Washington in Cold Spring Harbor, New York, that verified genes were made of deoxyribonucleic acid, or DNA. Hershey and Chase performed their experiments, later named the Hershey-Chase experiments, on viruses that infect bacteria, also called bacteriophages. The experiments followed decades of scientists’ skepticism about whether genetic material was composed of protein or DNA.

Format: Articles

Subject: Experiments

“Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III” (1944) by Oswald Avery, Colin MacLeod and Maclyn McCarty

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III,” hereafter “Transformation.” The authors isolated, purified, and characterized genes within bacteria and found evidence that those genes were made of DNA and not protein.

Format: Articles

Subject: Publications

Robert William Briggs (1911-1983)

Robert William Briggs was a prolific developmental biologist. However, he is most identified with the first successful cloning of a frog by nuclear transplantation. His later studies focused on the problem of how genes influence development.

Format: Articles

Subject: People

Human Fertilisation and Embryology Authority (1991- )

In 1991, the
United Kingdom established the Human Fertilisation and Embryology
Authority (HFEA) as a response to technologies that used human embryos.
The HFEA is a regulatory power of the Health and Social Services
Department in London, UK, that oversees the implementation of
reproductive technologies and the use of embryos in research within the
United Kingdom. It establishes protocols by which researchers may use
human embryos, develops legislation on how human embryos are stored and

Format: Articles

Subject: Organizations

Bicoid

Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration gradient across that developing region. The bicoid gradient, which extends across the anterior-posterior axis of Drosophila embryos, organizes the head and thorax.

Format: Articles

Subject: Processes

Lap-Chee Tsui (1950-)

Lap-Chee Tsui is a geneticist who discovered the cystic fibrosis (CF) gene, and his research team sequenced human chromosome 7. As the location of the cystic fibrosis gene is now known, it is possible for doctors and specialists to identify in human fetuses the mutation that causes the fatal disease. Tsui's research also outlined the mechanisms for the development of cystic fibrosis, which were previously unknown.

Format: Articles

Subject: People, Reproduction

Seed Banking 1979-1994

In the early twentieth century, scientists and agriculturalists collected plants in greenhouses, botanical gardens, and fields. Seed collection efforts in the twentieth century coincided with the professionalization of plant breeding. When scientists became concerned over the loss of plant genetic diversity due to the expansion of a few agricultural crops around mid-century, countries and organizations created seed banks for long-term seed storage.

Format: Articles

Subject: Organizations

CRISPR Acquired Resistance Against Viruses (2007)

In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or viruses that infect bacteria. Horvath and his colleagues found that the bacteria used to culture yogurt, Streptococcus thermophilus, has an adaptive immune system that can target specific viruses that have previously infected the bacteria.

Format: Articles

Subject: Experiments

Beadle's One Gene-One Enzyme Hypothesis

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process.

Format: Graphics

Subject: Theories, Processes

Christiane Nusslein-Volhard (1942- )

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B.

Format: Articles

Subject: People

"The linear arrangement of six sex-linked factors in drosophila, as shown by their mode of association” (1913), by Alfred Henry Sturtevant

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila, the common fruit fly. In his experiments, Sturtevant determined the relative positions of six genetic factors on a fly’s chromosome by creating a process called gene mapping.

Format: Articles

Subject: Experiments, Publications

“Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid” (1953), by James Watson and Francis Crick

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T. Avery and his group at Rockefeller University in New York City, New York published experimental evidence that DNA contained genes, the biological factors called genes that dictate how organisms grow and develop.

Format: Articles

Subject: Publications

“Genetical Implications of the Structure of Deoxyribonucleic Acid” (1953), by James Watson and Francis Crick

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature.

Format: Articles

Subject: Publications

Muriel Wheldale Onslow (1880-1932)

Muriel Wheldale Onslow studied flowers in England with genetic and biochemical techniques in the early twentieth century. Working with geneticist William Bateson, Onslow used Mendelian principles and biochemical analysis together to understand the inheritance of flower colors at the beginning of the twentieth century. Onslow's study of snapdragons, or Antirrhinum majus, resulted in her description of epistasis, a phenomenon in which the phenotypic effect of one gene is influenced by one or more other genes. She discovered several biochemicals related to color formation.

Format: Articles

Subject: People

Angelman Syndrome

Angelman syndrome is a disorder in humans that causes neurological symptoms such as lack of speech, jerky movements, and insomnia. A human cell has two copies of twenty-three chromosomes for a total of forty-six-one copy from its mother and one from its father. But in the case of Angelman syndrome, the maternal chromosome numbered 15 has a mutation or deletion in its DNA and a gene on the paternal chromosome 15 is inactivated in some parts the brain. The result is the paternal gene is silenced during development of the sperm, which is called genetic imprinting.

Format: Articles

Subject: Disorders

Epigenetic Landscape

The epigenetic landscape is a concept representing embryonic development. It was proposed by Conrad Hal Waddington to illustrate the various developmental pathways a cell might take toward differentiation. The epigenetic landscape integrates the connected concepts of competence, induction, and regulative abilities of the genes into a single model designed to explain cellular differentiation, a long standing problem in embryology.

Format: Articles

Subject: Theories

Beadle and Ephrussi's Transplantation Technique for Drosophila

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes.

Format: Articles

Subject: Technologies

Ian Hector Frazer (1953– )

Ian Hector Frazer studied the human immune system and vaccines in Brisbane, Australia, and helped invent and patent the scientific process and technology behind what later became the human papillomavirus, or HPV, vaccinations. According to the Centers for Disease Control and Prevention of the US, or CDC, HPV is the most common sexually transmitted infection, and can lead to genital warts, as well as cervical, head, mouth, and neck cancers.

Format: Articles

Subject: People

The Source-Sink Model

The source-sink model, first proposed by biologist Francis Crick in 1970, is a theoretical system for how morphogens distribute themselves across small fields of early embryonic cells. A morphogen is a substance that determines the fate and phenotype of a group of cells through a concentration gradient of itself across that group. Crick’s theory has been experimentally confirmed with several morphogens, most notably with the protein bicoid , the first discovered morphogen. The model provides a theoretical structure for the understanding of some features of early embryonic development.

Format: Articles

Subject: Theories

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

Ethics of Designer Babies

A designer baby is a baby genetically engineered in vitro for specially selected traits, which can vary from lowered disease-risk to gender selection. Before the advent of genetic engineering and in vitro fertilization (IVF), designer babies were primarily a science fiction concept. However, the rapid advancement of technology before and after the turn of the twenty-first century makes designer babies an increasingly real possibility.

Format: Articles

Subject: Ethics, Reproduction

Hermann Joseph Muller's Study of X-rays as a Mutagen, (1926-1927)

Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification".

Format: Articles

Subject: Experiments

Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting

Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.

Format: Articles

Subject: Theories