Search

Displaying 1 - 22 of 22 items.

Ectopic Pregnancy

Many difficulties can arise with a pregnancy even after the sperm successfully fertilizes the oocyte. A major problem occurs if the fertilized egg tries to implant before reaching its normal implantation site, the uterus. An ectopic pregnancy occurs when a fertilized egg implants anywhere other than in the uterus, most commonly in the fallopian tubes. Ectopic pregnancies cannot continue to term, so a physician must remove the developing embryo as early as possible.

Format: Articles

Subject: Disorders, Processes, Reproduction

The Process of Implantation of Embryos in Primates

Implantation is a process in which a developing embryo, moving as a blastocyst through a uterus, makes contact with the uterine wall and remains attached to it until birth. The lining of the uterus (endometrium) prepares for the developing blastocyst to attach to it via many internal changes. Without these changes implantation will not occur, and the embryo sloughs off during menstruation. Such implantation is unique to mammals, but not all mammals exhibit it.

Format: Articles

Subject: Processes

The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

Format: Graphics

Subject: Theories, Processes

Somites: Formation and Role in Developing the Body Plan

Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.

Format: Articles

Subject: Processes

Spemann-Mangold Organizer

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.

Format: Articles

Subject: Processes

Sperm Capacitation

Sperm capacitation refers to the physiological changes spermatozoa must undergo in order to have the ability to penetrate and fertilize an egg. This term was first coined in 1952 by Colin Russell Austin based on independent studies conducted by both Austin himself as well as Min Chueh Chang in 1951. Since the initial reports and emergence of the term, the details of the process have been more clearly elucidated due to technological advancements.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Test-Tube Baby

A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies born from the earliest applications of artificial insemination and has now been expanded to refer to children born through the use of in vitro fertilization, the practice of fertilizing an embryo outside of a woman's body.

Format: Articles

Subject: Processes, Ethics, Reproduction

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

Mechanistic Realization of the Turtle Shell

Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.

Format: Articles

Subject: Processes

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

Abortion

Abortion is the removal of the embryo or fetus from the womb, before birth can occur-either naturally or by induced labor. Prenatal development occurs in three stages: the zygote, or fertilized egg; the embryo, from post-conception to eight weeks; and the fetus, from eight weeks after conception until the baby is born. After abortion, the infant does not and cannot live. Spontaneous abortion is the loss of the infant naturally or accidentally, without the will of the mother. It is more commonly referred to as miscarriage.

Format: Articles

Subject: Processes, Ethics, Reproduction

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

Circulatory Changes at Birth

When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.

Format: Articles

Subject: Processes

James G. Wilson's Six Principles of Teratology

James Graves Wilson's six principles of teratology, published in 1959, guide research on teratogenic agents and their effects on developing organisms. Wilson's six principles were inspired by Gabriel Madeleine Camille Dareste's five principles of experimental teratology published in 1877. Teratology is the study of birth defects, and a teratogen is something that either induces or amplifies abnormal embryonic or fetal development and causes birth defects.

Format: Articles

Subject: Processes, Reproduction

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.

Format: Articles

Subject: Processes, Experiments

The Development of Silicone Breast Implants for Use in Breast Augmentation Surgeries in the United States

In the 1960s, two plastic surgeons from the United States, Thomas Dillon Cronin and Frank Judson Gerow, collaborated with the Dow Corning Corporation, which specialized in silicone products, to create the first silicone breast implant. Surgeons used the implant, named the Cronin-Gerow implant, to improve the look of a woman’s breasts, by correcting for asymmetry, augmenting the size, or creating a more uplifted profile.

Format: Articles

Subject: Technologies, Processes

Essay: Homology

Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.

Format: Essays and Theses

Subject: Processes