Search
Filter by Topic
- (-) Remove Theories filter Theories
- Publications (14) Apply Publications filter
- Processes (11) Apply Processes filter
- Reproduction (8) Apply Reproduction filter
- Disorders (6) Apply Disorders filter
- Technologies (3) Apply Technologies filter
- Ethics (2) Apply Ethics filter
- Organisms (2) Apply Organisms filter
- Organizations (2) Apply Organizations filter
- People (2) Apply People filter
- Experiments (1) Apply Experiments filter
- Legal (1) Apply Legal filter
Filter by Format
- (-) Remove Articles filter Articles
David Reimer and John Money Gender Reassignment Controversy: The John/Joan Case
In the mid-1960s, psychologist John Money encouraged the gender reassignment of David Reimer, who was born a biological male but suffered irreparable damage to his penis as an infant. Born in 1965 as Bruce Reimer, his penis was irreparably damaged during infancy due to a failed circumcision. After encouragement from Money, Reimer’s parents decided to raise Reimer as a girl. Reimer underwent surgery as an infant to construct rudimentary female genitals, and was given female hormones during puberty.
Format: Articles
Subject: Theories
The Hedgehog Signaling Pathway in Vertebrates
The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.
Format: Articles
Subject: Theories
Dinosaur Egg Parataxonomy
Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings.
Format: Articles
Subject: Theories
The Debate over DNA Replication Before the Meselson-Stahl Experiment (1953–1957)
Between 1953 and 1957, before the Meselson-Stahl experiment verified semi-conservative replication of DNA, scientists debated how DNA replicated. In 1953, James Watson and Francis Crick proposed that DNA was composed of two helical strands that wound together in a coil. Their model suggested a replication mechanism, later termed semi-conservative replication, in which parental DNA strands separated and served as templates for the replication of new daughter strands.
Format: Articles
Subject: Theories
John von Neumann's Cellular Automata
Cellular automata (CA) are mathematical models used to simulate complex systems or processes. In several fields, including biology, physics, and chemistry, CA are employed to analyze phenomena such as the growth of plants, DNA evolution, and embryogenesis. In the 1940s John von Neumann formalized the idea of cellular automata in order to create a theoretical model for a self-reproducing machine. Von Neumann's work was motivated by his attempt to understand biological evolution and self-reproduction.
Format: Articles
Subject: Theories
"Testing the Kin Selection Theory: Who Controls the Investments?" from The Ants (1990), by Bert Hölldobler and Edward O. Wilson
In “Testing the Kin Selection Theory: Who Controls the Investments?” Bert Hölldobler and Edward Osborne Wilson discussed the predictive power of kin selection theory, a theory about the evolution of social behaviors. As part of Hölldobler's and Wilson's 1990 book titled The Ants, Hölldobler and Wilson compared predictions about the reproductive practices of ants to data about the reproductive practices of ants. They showed that the data generally supported the expected behaviors proposed by kin selection theory.
Format: Articles
Subject: Publications, Theories
The French Flag Model
The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.
Format: Articles
Carnegie Stages
Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work.
Format: Articles
Subject: Theories
Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting
Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.
Format: Articles
Subject: Theories
Interspecies SCNT-derived Humanesque Blastocysts
Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research.
Format: Articles
Subject: Theories
The Role of the Notch signaling pathway in Somitogenesis
Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.
Format: Articles
Mitochondria
All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms.
Format: Articles
Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)
In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.
Format: Articles
Subject: Experiments, Theories, Processes
"Mitochondrial DNA and Human Evolution" (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson
In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria.
Format: Articles
Subject: Publications, Theories
“The Intergenerational Effects of Fetal Programming: Non-genomic Mechanisms for the Inheritance of Low Birth Weight and Cardiovascular Risk” (2004), by Amanda J. Drake and Brian R. Walker
In 2004, Amanda J. Drake and Brian R. Walker published “The Intergenerational Effects of Fetal Programming: Non-genomic Mechanisms for the Inheritance of Low Birth Weight and Cardiovascular Risk,” hereafter, “The Intergenerational Effects,” in the Journal of Endocrinology. In their article, the authors assert that cardiovascular disease may develop via fetal programming, which is when a certain event occurring during a critical point of pregnancy affects the fetus long after birth.
Format: Articles
Subject: Publications, Theories, Reproduction
"On the Origin of Mitosing Cells" (1967), by Lynn Sagan
On the Origin of Mitosing Cells by Lynn Sagan appeared in the March 1967 edition of the Journal of Theoretical Biology. At the time the article was published, Lynn Sagan had divorced astronomer Carl Sagan, but kept his last name. Later, she remarried and changed her name to Lynn Margulis, and will be referred to as such throughout this article. In her 1967 article, Margulis develops a theory for the origin of complex cells that have enclosed nuclei, called eukaryotic cells.
Format: Articles
Subject: Publications, Theories
The Gradient Theory
The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia.
Format: Articles
Subject: Theories
Telomeres and Telomerase in Cellular Aging (Senescence)
Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development.
Format: Articles
Subject: Theories
Syncytial Theory
The syncytial theory of neural development was proposed by Victor Hensen in 1864 to explain the growth and differentiation of the nervous system. This theory has since been discredited, although it held a significant following at the turn of the twentieth century. Neural development was well studied but poorly understood, so Hensen proposed a simple model of development. The syncytial theory predicted that the nervous system was composed of many neurons with shared cytoplasm.
Format: Articles
Subject: Theories
Study of Fossilized Massospondylus Dinosaur Embryos from South Africa (1978-2012)
In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183 million years ago. The embryos were partially visible but surrounded by eggshell and rock, called matrix. Kitching said that the eggs were too delicate to remove from the matrix without damage.
Format: Articles
The Source-Sink Model
The source-sink model, first proposed by biologist Francis Crick in 1970, is a theoretical system for how morphogens distribute themselves across small fields of early embryonic cells. A morphogen is a substance that determines the fate and phenotype of a group of cells through a concentration gradient of itself across that group. Crick’s theory has been experimentally confirmed with several morphogens, most notably with the protein bicoid , the first discovered morphogen. The model provides a theoretical structure for the understanding of some features of early embryonic development.
Format: Articles
Subject: Theories
ABO Blood Type Identification and Forensic Science (1900-1960)
The use of blood in forensic analysis is a method for identifying individuals suspected of committing some kinds of crimes. Paul Uhlenhuth and Karl Landsteiner, two scientists working separately in Germany in the early twentieth century, showed that there are differences in blood between individuals. Uhlenhuth developed a technique to identify the existence of antibodies, and Landsteiner and his students showed that humans had distinctly different blood types called A, B, AB, and O.
Format: Articles
Subject: Theories, Legal, Technologies
Hartsoeker's Homunculus Sketch from Essai de Dioptrique
This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.
Format: Articles
Apoptosis in Embryonic Development
Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.
Format: Articles
Subject: Theories
The Hayflick Limit
The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,
Format: Articles
Subject: Theories