Search

Displaying 26 - 40 of 40 items.

Human Embryonic Stem Cells

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions.

Format: Articles

Subject: Processes, Reproduction

Homeobox Genes and the Homeobox

Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.

Format: Articles

Subject: Processes

Teratomas

Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.

Format: Articles

Subject: Processes, Disorders

Edwin Grant Conklin (1863-1952)

Edwin Grant Conklin was born in Waldo, Ohio, on 24 November 1863 to parents Nancy Maria Hull and Dr. Abram V. Conklin. Conklin's family was very religious and he seriously considered a theistic path before choosing a career in academics. Conklin's scientific work was primarily in the areas of embryology, cytology, and morphology, though many questions regarding the relationships between science, society, and philosophy had an influence on both his writings and academic lectures.

Format: Articles

Subject: People

"Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells" (2007), by Junying Yu et al.

On 2 December 2007, Science published a report on creating human induced pluripotent stem (iPS) cells from human somatic cells: "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." This report came from a team of Madison, Wisconsin scientists: Junying Yu, Maxim A. Vodyanik, Kim Smuga-Otto, Jessica Antosiewicz-Bourget, Jennifer L. Frane, Shulan Tian, Jeff Nie, Gudrun A. Jonsdottir, Victor Ruotti, Ron Stewart, Igor I. Slukvin, and James A. Thomson.

Format: Articles

Subject: Publications

Neonatal Respiratory Distress Syndrome and Its Treatment with Artificial Surfactant

Neonatal respiratory distress syndrome, previously called hyaline membrane disease, is a respiratory disease affecting premature newborns. Neonatal respiratory distress syndrome involves shallow breathing, pauses between breaths that last a few seconds, or apnea, and a bluish tinge to the infant’s skin. The syndrome occurs when microscopic sacs called alveoli in infant lungs do not produce surfactant, a liquid that coats the inside of the lungs and helps them inflate during breathing.

Format: Articles

Subject: Disorders

Developmental Timeline of Alcohol-Induced Birth Defects

Maternal consumption of alcohol (ethanol) during pregnancy can result in a continuum of embryonic developmental abnormalities that vary depending on the severity, duration, and frequency of exposure of ethanol during gestation. Alcohol is a teratogen, an environmental agent that impacts the normal development of an embryo or fetus. In addition to dose-related concerns, factors such as maternal genetics and metabolism and the timing of alcohol exposure during prenatal development also impact alcohol-related birth defects.

Format: Articles

Subject: Disorders, Reproduction

Craig C. Mello (1960- )

Craig C. Mello is an American developmental biologist and Nobel Laureate, who helped discover RNA interference (RNAi). Along with his colleague Andrew Fire, he developed gene knockouts using RNAi. In 006 Mello won the Nobel Prize in Physiology or Medicine for his contribution. Mello also contributed to developmental biology, focusing on gene regulation, cell signaling, cleavage formation, germline determination, cell migration, cell fate differentiation, and morphogenesis.

Format: Articles

Subject: People

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

Julia Barlow Platt (1857-1935)

Julia Barlow Platt studied neural crests in animal embryos and became involved in politics in the US during the nineteenth and twentieth centuries. She researched how body and head segments formed in chicks (Gallus gallus) and spiny dogfish (Squalus acanthias). Platt observed that in the mudpuppy (Necturus maculosus), the coordinated migration of neural crest cells in the embryo produced parts of the nervous system, bones, and connective tissues in the head.

Format: Articles

Subject: People

The Notch Signaling Pathway in Embryogenesis

The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.

Format: Articles

Subject: Processes

Induced Pluripotent Stem Cell Experiments by Kazutoshi Takahashi and Shinya Yamanaka in 2006 and 2007

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation.

Format: Articles

Subject: Experiments

Dizhou Tong (1902-1979)

Dizhou Tong, also called Ti Chou Tung, studied marine animals and helped introduce and organize experimental embryology in China during the twentieth century. He introduced cellular nuclear transfer technology to the Chinese biological community, developed methods to clone organisms from many marine species, and investigated the role of cytoplasm in early development. Tong's administrative and scientific leadership in the fields of marine, cellular, and developmental biology contributed to China's experimental embryology research programs.

Format: Articles

Subject: People

Spemann-Mangold Organizer

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.

Format: Articles

Subject: Processes

Karl Oskar Illmensee (1939–)

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.

Format: Articles

Subject: People, People