Search
Filter by Topic
- People (317) Apply People filter
- Reproduction (210) Apply Reproduction filter
- Publications (206) Apply Publications filter
- Experiments (130) Apply Experiments filter
- Technologies (95) Apply Technologies filter
- Disorders (93) Apply Disorders filter
- Processes (85) Apply Processes filter
- Theories (79) Apply Theories filter
- Legal (75) Apply Legal filter
- Organizations (56) Apply Organizations filter
- Ethics (43) Apply Ethics filter
- Outreach (37) Apply Outreach filter
- Organisms (14) Apply Organisms filter
- Religion (12) Apply Religion filter
- Reproductive Health Arizona (6) Apply Reproductive Health Arizona filter
- Places (2) Apply Places filter
- DNA (1) Apply DNA filter
- Publication (1) Apply Publication filter
- RHAZ (1) Apply RHAZ filter
- Technology (1) Apply Technology filter
Filter by Format
- (-) Remove Articles filter Articles
The Discovery of p53 Protein
The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens.
Format: Articles
Subject: Experiments
Forbes v. Napolitano (2000)
Forbes v. Napolitano (2000) was a US court case that established that Arizona researchers could use fetal tissues from induced abortions for basic scientific research, for instance, as a source of stem cells. The case challenged the constitutionality of the Arizona Revised Statute (ARS) 36-2303 in the Ninth Circuit US Court of Appeals, a law that banned researchers from using fetal tissues from abortions for any type of medical experimentation or investigation. The Ninth Circuit US Court of Appeals decision in Forbes v.
Format: Articles
Subject: Legal
Viktor Hamburger's Study of Central-Peripheral Relations in the Development of Nervous System
An important question throughout the history of embryology is whether the formation of a biological structure is predetermined or shaped by its environment. If both intrinsic and environmental controls occur, how exactly do the two processes coordinate in crafting specific forms and functions? When Viktor Hamburger started his PhD study in embryology in the 1920s, few neuroembryologists were investigating how the central neurons innervate peripheral organs.
Format: Articles
Subject: Experiments
Karl Oskar Illmensee (1939–)
Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.
Format: Articles
Epigenetic Landscape
The epigenetic landscape is a concept representing embryonic development. It was proposed by Conrad Hal Waddington to illustrate the various developmental pathways a cell might take toward differentiation. The epigenetic landscape integrates the connected concepts of competence, induction, and regulative abilities of the genes into a single model designed to explain cellular differentiation, a long standing problem in embryology.
Format: Articles
Subject: Theories
Mitochondrial DNA (mtDNA)
Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.
Format: Articles
Subject: Theories
Neural Crest
Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.
Format: Articles
Subject: Theories
"The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles" (1962), by John B. Gurdon
In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types.
Format: Articles
Subject: Experiments
"Cellular death in morphogenesis of the avian wing" (1962), by John W. Saunders Jr., et al.
In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis.
Format: Articles
Subject: Experiments
"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (1972), by John F. R. Kerr, Andrew H. Wyllie and Alastair R. Currie
"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (hereafter abbreviated as "Apoptosis") was published in the British Journal of Cancer in 1972 and co-authored by three pathologists who collaborated at the University of Aberdeen, Scotland. In this paper the authors propose the term apoptosis for regulated cell death that proceeds through active, controlled morphological changes. This is in contrast to necrosis, a passive mode of cell death that results from uncontrolled cellular reactions to injury or stress.
Format: Articles
Subject: Publications
Robert Geoffrey Edwards and Patrick Christopher Steptoe's Clinical Research in Human in vitro Fertilization and Embryo Transfer, 1969-1980
The biomedical accomplishment of human in vitro fertilization and embryo transfer (IVF-ET) took years to become the successful technique that presently enables infertile couples to have their own children. In 1969, more than ten years after the first attempts to treat infertilities with IVF technologies, the British developmental biologist Robert Geoffrey Edwards fertilized human oocytes in a Petri dish for the first time.
Format: Articles
Subject: Experiments, Reproduction
Fate Mapping Techniques
For more than 2000 years, embryologists, biologists, and philosophers have studied and detailed the processes that follow fertilization. The fertilized egg proliferates into cells that begin to separate into distinct, identifiable zones that will eventually become adult structures through the process of morphogenesis. As the cells continue to multiply, patterns form and cells begin to differentiate, and eventually commit to their fate.
Format: Articles
Subject: Technologies
Robert Alan Good (1922-2003)
Robert Alan Good was an American physician and scientific researcher who explored the cellular mechanisms of immunity. His research and discoveries earned him the label of "father of modern immunology." Though his work in immunology is considered his greatest scientific achievement, Good is also well known for his work with tissue engineering. From his research on immunology, Good was able to perform the first successful allogeneic (donor and recipient are unrelated) bone marrow transplant.
Format: Articles
Subject: People
Nuclear Transplantation
Nuclear transplantation is a method in which the nucleus of a donor cell is relocated to a target cell that has had its nucleus removed (enucleated). Nuclear transplantation has allowed experimental embryologists to manipulate the development of an organism and to study the potential of the nucleus to direct development. Nuclear transplantation, as it was first called, was later referred to as somatic nuclear transfer or cloning.
Format: Articles
Subject: Processes
Caspar Friedrich Wolff (1734-1794)
Caspar Friedrich Wolff is most famous for his 1759 doctoral dissertation, Theoria Generationis, in which he described embryonic development in both plants and animals as a process involving layers of cells, thereby refuting the accepted theory of preformation: the idea that organisms develop as a result of the unfolding of form that is somehow present from the outset, as in a homunculus. This work generated a great deal of controversy and discussion at the time of its publication but was an integral move in the reemergence and acceptance of the theory of epigenesis.
Format: Articles
Subject: People
"Development, Plasticity and Evolution of Butterfly Eyespot Patterns" (1996), by Paul M. Brakefield et al.
Paul M. Brakefield and his research team in Leiden, the Netherlands, examined the development, plasticity, and evolution of butterfly eyespot patterns, and published their findings in Nature in 1996. Eyespots are eye-shaped color patterns that appear on the wings of some butterflies and birds as well as on the skin of some fish and reptiles. In butterflies, such as the peacock butterfly Aglais, the eyespots resemble the eyes of birds and help butterflies deter potential predators.
Format: Articles
Subject: Experiments
“Association of Birth Outcomes with Fetal Exposure to Parabens, Triclosan and Triclocarban in an Immigrant Population in Brooklyn, New York” (2017), by Laura Geer, Benny Pycke, Joshua Waxenbaum, David Sherer, Ovadia Abulafia, and Rolf U. Halden
In 2017, Laura Geer and colleagues published the results of a study investigating the effects of parabens and antimicrobial compounds on birth outcomes in the article “Association of Birth Outcomes with Fetal Exposure to Parabens, Triclosan and Triclocarban in an Immigrant Population in Brooklyn, New York” in the Journal of Hazardous Materials. Parabens are a class of preservatives found in cosmetic and pharmaceutical products and antimicrobial compounds are compounds that kill microorganisms such as bacteria.
Format: Articles
Subject: Publications
Dinosaur Egg Parataxonomy
Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings.
Format: Articles
Subject: Theories
The Jackson Laboratory
The Roscoe B. Jackson Laboratory, known commonly in the scientific field as the Jackson Laboratory, was founded by Clarence Cook Little in May 1929. The lab has been pivotal in research with in vitro fertilization, teratomas, gene replacement therapy for birth defects, and more because its researchers have focused from the beginning on developing the mouse as a model organism. Mice were chosen by researchers at Jackson as the best available model for genetic research, and today genetically uniform strains of mice developed at the lab are used in laboratories all over the world.
Format: Articles
Subject: Organizations
The Roslin Institute (1993- )
The Roslin Institute was established in 1993 in the village of Roslin, Scotland, as an independent research center by the Biotechnology and Biological Sciences Research Council (BBSRC), and as of 2014 is part of the University of Edinburgh in Edinburgh, Scotland. Researchers at the Roslin Institute cloned the Dolly the sheep in 1996. According to the Roslin Institute, Dolly was the first mammal to develop into an adult from the transfer of the nucleus of an adult sheep cell into an ovum with the nucleus removed.
Format: Articles
Subject: Organizations
The Source-Sink Model
The source-sink model, first proposed by biologist Francis Crick in 1970, is a theoretical system for how morphogens distribute themselves across small fields of early embryonic cells. A morphogen is a substance that determines the fate and phenotype of a group of cells through a concentration gradient of itself across that group. Crick’s theory has been experimentally confirmed with several morphogens, most notably with the protein bicoid , the first discovered morphogen. The model provides a theoretical structure for the understanding of some features of early embryonic development.
Format: Articles
Subject: Theories
Stanley Alan Plotkin's Development of a Rubella Vaccine (1969)
In the US during the late 1960s, Stanley Alan Plotkin, John D. Farquhar, Michael Katz, and Fritz Buser isolated a strain of the infectious disease rubella and developed a rubella vaccine with a weakened, or attenuated, version of the virus strain. Rubella, also called German measles, is a highly contagious disease caused by the rubella virus that generally causes mild rashes and fever. However, in pregnant women, rubella infections can lead to developmental defects in their fetuses.
Format: Articles
Subject: Experiments
Edwin Grant Conklin (1863-1952)
Edwin Grant Conklin was born in Waldo, Ohio, on 24 November 1863 to parents Nancy Maria Hull and Dr. Abram V. Conklin. Conklin's family was very religious and he seriously considered a theistic path before choosing a career in academics. Conklin's scientific work was primarily in the areas of embryology, cytology, and morphology, though many questions regarding the relationships between science, society, and philosophy had an influence on both his writings and academic lectures.
Format: Articles
Subject: People
Percivall Pott (1714-1788)
Percivall Pott was a physician in England during the eighteenth century who identified soot as the cause of chimney sweeps' scrotal cancer, later called testicular cancer. In the 1770s, Pott observed that scrotal cancer commonly afflicted chimney sweeps, the young boys sent up into chimneys to clean away the soot left over from fires, and he hypothesized that the soot inside chimneys might cause that type of cancer. Pott was one of the first doctors to identify some environmental factor as causing cancer.
Format: Articles
Subject: People
"The Potency of the First Two Cleavage Cells in Echinoderm Development. Experimental Production of Partial and Double Formations" (1891-1892), by Hans Driesch
Hans Adolf Eduard Driesch was a late-nineteenth and early-twentieth century philosopher and developmental biologist. In the spring of 1891 Driesch performed experiments using two-celled sea urchin embryos, the results of which challenged the then-accepted understanding of embryo development. Driesch showed that the cells of an early embryo, when separated, could each continue to develop into normal larval forms.
Format: Articles
Subject: Experiments, Publications