Search

Displaying 26 - 50 of 82 items.

"On the Origin of Mitosing Cells" (1967), by Lynn Sagan

On the Origin of Mitosing Cells by Lynn Sagan appeared in the March 1967 edition of the Journal of Theoretical Biology. At the time the article was published, Lynn Sagan had divorced astronomer Carl Sagan, but kept his last name. Later, she remarried and changed her name to Lynn Margulis, and will be referred to as such throughout this article. In her 1967 article, Margulis develops a theory for the origin of complex cells that have enclosed nuclei, called eukaryotic cells.

Format: Articles

Subject: Publications, Theories

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

Syncytial Theory

The syncytial theory of neural development was proposed by Victor Hensen in 1864 to explain the growth and differentiation of the nervous system. This theory has since been discredited, although it held a significant following at the turn of the twentieth century. Neural development was well studied but poorly understood, so Hensen proposed a simple model of development. The syncytial theory predicted that the nervous system was composed of many neurons with shared cytoplasm.

Format: Articles

Subject: Theories

"The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme" (1979), by Stephen J. Gould and Richard C. Lewontin

The Spandrels of San Marco and the Panglossian Paradigm:
A Critique of the Adaptationist Programme, hereafter called
The Spandrels, is an article written by Stephen J. Gould and
Richard C. Lewontin published in the Proceedings of the Royal
Society of London in 1979. The paper emphasizes issues with
what the two authors call adaptationism or the adaptationist
programme as a framework to explain how species and traits evolved. The paper
is one in a series of works in which Gould emphasized the

Format: Articles

Subject: Publications, Theories

Reassessment of Carrel's Immortal Tissue Culture Experiments

In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period.

Format: Articles

Subject: Processes, Theories

Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting

Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.

Format: Articles

Subject: Theories

John von Neumann's Cellular Automata

Cellular automata (CA) are mathematical models used to simulate complex systems or processes. In several fields, including biology, physics, and chemistry, CA are employed to analyze phenomena such as the growth of plants, DNA evolution, and embryogenesis. In the 1940s John von Neumann formalized the idea of cellular automata in order to create a theoretical model for a self-reproducing machine. Von Neumann's work was motivated by his attempt to understand biological evolution and self-reproduction.

Format: Articles

Subject: Theories

Thomas Hunt Morgan's Definition of Regeneration: Morphallaxis and Epimorphosis

For Thomas Hunt Morgan clarity was of utmost importance. He was therefore frustrated with the many disparate, disconnected terms that were used to refer to similar, if not the same, regenerative processes within organisms. When Morgan wrote Regeneration in 1901 there had been many different terms developed and adopted by various investigators to describe their observations. As a result there were many inconsistencies making it difficult to discuss results comparatively and also making it more challenging to generalize. Defining terms was a priority for Morgan.

Format: Articles

Subject: Theories

Richard Woltereck's Concept of Reaktionsnorm

Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways in which the environment can alter the development of an organism, and its adult characteristics.

Format: Articles

Subject: Theories

The Gradient Theory

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia.

Format: Articles

Subject: Theories

Translational Developmental Biology

Translational developmental biology is a growing approach to studying biological phenomena that explicitly aims to develop medical therapies. When discussing the generation of new therapies it is often argued that they will emerge as a "translation" from "fundamental biology." Although translational research is not a new term, "translational developmental biology" has been steadily gaining popularity as discoveries in cell and developmental biology, particularly those involving stem cells, provide a basis for regenerative medicine.

Format: Articles

Subject: Theories

Stem Cell Tourism

When James Thomson of the University of Wisconsin announced in 1998 that he had derived and cultured human embryonic stem cells(hESCs), Americans widely believed-and accepted-that stem cells would one day be the basis of a multitude of regenerative medical techniques. Researchers promised that they would soon be able to cure a variety of diseases and injuries such as cancer, diabetes, Parkinson's, spinal cord injuries, severe burns, and many others. But it wasn't until January 2009 that the Food and Drug Administration approved the first human clinical trials using hESCs.

Format: Articles

Subject: Theories, Ethics

Epigenetic Landscape

The epigenetic landscape is a concept representing embryonic development. It was proposed by Conrad Hal Waddington to illustrate the various developmental pathways a cell might take toward differentiation. The epigenetic landscape integrates the connected concepts of competence, induction, and regulative abilities of the genes into a single model designed to explain cellular differentiation, a long standing problem in embryology.

Format: Articles

Subject: Theories

Hartsoeker's Homunculus Sketch from Essai de Dioptrique

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.

Format: Articles

Subject: Theories, Processes

Wilhelm Johannsen's Genotype-Phenotype Distinction

Wilhelm Johannsen in Denmark first proposed the distinction between genotype and phenotype in the study of heredity in 1909. This distinction is between the hereditary dispositions of organisms (their genotypes) and the ways in which those dispositions manifest themselves in the physical characteristics of those organisms (their phenotypes). This distinction was an outgrowth of Johannsen's experiments concerning heritable variation in plants, and it influenced his pure line theory of heredity.

Format: Articles

Subject: Theories

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

The Hedgehog Signaling Pathway in Vertebrates 

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

Format: Articles

Subject: Theories

Neurocristopathies

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or

Format: Articles

Subject: Theories

Mitochondrial DNA (mtDNA)

Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome.

Format: Articles

Subject: Theories

Purkinje Cells

Purkinje cells, also called Purkinje neurons, are neurons in vertebrate animals located in the cerebellar cortex of the brain. Purkinje cell bodies are shaped like a flask and have many threadlike extensions called dendrites, which receive impulses from other neurons called granule cells. Each cell also has a single projection called an axon, which transmits impulses to the part of the brain that controls movement, the cerebellum. Purkinje cells are inhibitory neurons: they secrete neurotransmitters that bind to receptors that inhibit or reduce the firing of other neurons.

Format: Articles

Subject: Theories

George W. Beadle's One Gene-One Enzyme Hypothesis

The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in a fruit fly controlled a single, specific chemical reaction in the fruit fly, which one enzyme controlled.

Format: Articles

Subject: Theories

“A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-Culture Cells” (1972), by Peter Mazur, Stanley Leibo, and Ernest Chu

In 1972, Peter Mazur, Stanley Leibo, and Ernest Chu published, “A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-culture Cells,” hereafter, “A Two-Factor Hypothesis of Freezing Injury,” in the journal, Experimental Cell Research. In the article, the authors uncover that exposure to high salt concentrations and the formation of ice crystals within cells are two factors that can harm cells during cryopreservation. Cryopreservation is the freezing of cells to preserve them for storage, study, or later use.

Format: Articles

Subject: Publications, Theories

Revive & Restore’s Woolly Mammoth Revival Project

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways.

Format: Articles

Subject: Theories, Technologies, Organizations, Ethics

Estrogen and the Menstrual Cycle in Humans

Estrogen is the primary sex hormone in women and it functions during the reproductive menstrual cycle. Women have three major types of estrogen: estrone, estradiol, and estriol, which bind to and activate receptors within the body. Researchers discovered the three types of estrogen over a period of seven years, contributing to more detailed descriptions of the menstrual cycle. Each type of estrogen molecule contains a slightly different arrangement or number of atoms that in turn causes some of the estrogens to be more active than others.

Format: Articles

Subject: Theories, Reproduction

Apoptosis in Embryonic Development

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.

Format: Articles

Subject: Theories