Search

Displaying 1 - 10 of 10 items.

Fruit Fly Life Cycle

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.

Format: Graphics

Subject: Theories, Processes, Organisms

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

Frog Embryo in the Blastula Stage

Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.

Format: Graphics

Subject: Processes, Organisms, Theories

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Hartsoeker's Homunculus Sketch from Essai de Dioptrique

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.

Format: Articles

Subject: Theories, Processes

DNA and X and Y Chromosomes

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Format: Graphics

Subject: Theories, Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

The French Flag Model

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Format: Articles

Subject: Processes, Theories

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes