Search

Displaying 26 - 43 of 43 items.

Gastrulation in Gallus gallus (Domestic Chicken)

Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.

Format: Articles

Subject: Processes

The French Flag Model

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Format: Articles

Subject: Processes, Theories

Epidermal Growth Factor

Epidermal growth factor is a signaling molecule that stimulates the growth of epidermal tissues during development and throughout life. Stanley Cohen discovered epidermal growth factor (EGF) during studies of nerve growth factor as a side effect of other experiments. EGF stimulates tissue growth by initiating a variety of cellular mechanisms. This work led to the 1986 Nobel Prize in Physiology or Medicine awarded to Cohen and Rita Levi-Montalcini.

Format: Articles

Subject: Processes

Endothelium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body.

Format: Articles

Subject: Processes, Theories

James G. Wilson's Six Principles of Teratology

James Graves Wilson's six principles of teratology, published in 1959, guide research on teratogenic agents and their effects on developing organisms. Wilson's six principles were inspired by Gabriel Madeleine Camille Dareste's five principles of experimental teratology published in 1877. Teratology is the study of birth defects, and a teratogen is something that either induces or amplifies abnormal embryonic or fetal development and causes birth defects.

Format: Articles

Subject: Processes, Reproduction

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Umbilical Cord Blood Stem Cells (UCBSC)

Umbilical cord blood (UCB) stem cells are hematopoietic stem cells (HSC) that are recovered from the blood of the umbilical cord and placenta after birth. Umbilical cord blood is rich in cells that express the CD34 molecule, a surface protein that identifies cells as stem cells. Prior to the discovery of UCB stem cells, it was standard procedure to discard the umbilical cord and placenta; now much effort is devoted to raising public awareness and to encouraging people to store or donate cord blood.

Format: Articles

Subject: Processes, Reproduction

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

Homeobox Genes and the Homeobox

Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.

Format: Articles

Subject: Processes

Teratomas

Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.

Format: Articles

Subject: Processes, Disorders

Hematopoietic Stem Cells

The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development.

Format: Articles

Subject: Processes

The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl

In an experiment later named for them, Matthew Stanley Meselson and Franklin William Stahl in the US demonstrated during the 1950s the semi-conservative replication of DNA, such that each daughter DNA molecule contains one new daughter subunit and one subunit conserved from the parental DNA molecule. The researchers conducted the experiment at California Institute of Technology (Caltech) in Pasadena, California, from October 1957 to January 1958.

Format: Articles

Subject: Processes, Experiments

Essay: Homology

Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.

Format: Essays and Theses

Subject: Processes

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

Intraspecies Chimeras Produced in Laboratory Settings (1960-1975)

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes.

Format: Articles

Subject: Organisms, Processes

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

Hedgehog Signaling Pathway

The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.

Format: Articles

Subject: Processes