Search

Displaying 1 - 9 of 9 items.

Amniocentesis Prior to 1980

The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.

Format: Articles

Subject: Processes, Reproduction

Regeneration

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!

Format: Articles

Subject: Processes

Epithelium

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets.

Format: Articles

Subject: Theories, Processes

The Notch Signaling Pathway in Embryogenesis

The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.

Format: Articles

Subject: Processes

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Spemann-Mangold Organizer

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.

Format: Articles

Subject: Processes

Mesenchyme

Mesenchyme is a type of animal tissue comprised of loose cells embedded in a mesh of proteins and fluid, called the extracellular matrix. The loose, fluid nature of mesenchyme allows its cells to migrate easily and play a crucial role in the origin and development of morphological structures during the embryonic and fetal stages of animal life. Mesenchyme directly gives rise to most of the body's connective tissues, from bones and cartilage to the lymphatic and circulatory systems.

Format: Articles

Subject: Processes

Zidovudine or Azidothymidine (AZT)

In 1964, Jerome Horwitz synthesized the drug zidovudine, commonly abbreviated ZDV, otherwise known as azidothymidine, or AZT, at Wayne State University School of Medicine in Detroit, Michigan. Horwitz and his colleagues originally developed zidovudine to treat cancers caused by retroviruses. In 1983, Nobel Prize in Physiology or Medicine recipients Françoise Barré-Sinoussi and Luc Montagnier discovered a new retrovirus, the human immunodeficiency virus, or HIV, at the Pasteur Institute in Paris, France.

Format: Articles

Subject: Processes