Search

Displaying 151 - 175 of 498 items.

John Hunter (1728–1793)

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive systems. He helped to describe the exchange of blood between pregnant women and their fetuses. Hunter also housed various natural collections, as well as thousands of preserved specimens from greater than thirty years of anatomy work.

Format: Articles

Subject: People, Reproduction

Plowman v. Fort Madison Community Hospital (2017)

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful birth if she believed that her physicians failed to disclose evidence of fetal abnormalities that may have prompted her to terminate the pregnancy.

Format: Articles

Subject: Legal

William Thomas Astbury (1898–1961)

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had not yet identified DNA’s structure or function in genes, the genetic components responsible for how organisms develop and reproduce. He was one of the first scientists to use X-ray crystallography to study the structure of DNA.

Format: Articles

Subject: People

John von Neumann's Cellular Automata

Cellular automata (CA) are mathematical models used to simulate complex systems or processes. In several fields, including biology, physics, and chemistry, CA are employed to analyze phenomena such as the growth of plants, DNA evolution, and embryogenesis. In the 1940s John von Neumann formalized the idea of cellular automata in order to create a theoretical model for a self-reproducing machine. Von Neumann's work was motivated by his attempt to understand biological evolution and self-reproduction.

Format: Articles

Subject: Theories

Franz Julius Keibel (1861-1929)

Franz Keibel studied the embryos of humans and other animals in Europe at the turn of the twentieth century. He lived and worked in several different parts of Germany and France. Keibel drew illustrations of embryos in many stages of development. Keibel used these illustrations, which he and others in the scientific community called normal plates, to describe the development of organisms in several species of vertebrates.

Format: Articles

Subject: People

Leonardo da Vinci's Embryological Drawings of the Fetus

Leonardo da Vinci's embryological drawings of the fetus in the womb and his accompanying observational annotations are found in the third volume of his private notebooks. The drawings of Leonardo's embryological studies were conducted between the years 1510-1512 and were drawn with black and red chalk with some pen and ink wash on paper. These groundbreaking illustrations of the fetus reveal his advanced understanding of human development and demonstrate his role in the vanguard of embryology during the Renaissance.

Format: Articles

Subject: Processes

Francis Maitland Balfour (1851-1882)

During the 1870s and early 1880s, the British morphologist Francis Maitland Balfour contributed in important ways to the budding field of evolutionary embryology, especially through his comparative embryological approach to uncovering ancestral relationships between groups. As developmental biologist and historian Brian Hall has observed, the field of evolutionary embryology in the nineteenth century was the historical ancestor of modern-day evolutionary developmental biology.

Format: Articles

Subject: People

Warren Harmon Lewis (1870-1964)

As one of the first to work at the Carnegie Institution of Washington Department of Embryology, Warren Harmon Lewis made a number of contributions to the field of embryology. In addition to his experimental discoveries on muscle development and the eye, Lewis also published and revised numerous works of scientific literature, including papers in the Carnegie Contributions to Embryology and five editions of Gray's Anatomy.

Format: Articles

Subject: People

James David Ebert (1921-2001)

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology.

Format: Articles

Subject: People

William Harvey (1578-1657)

Renowned physician and scientist William Harvey is best known for his accurate description of how blood circulates through the body. While his published work on the circulation of blood is considered the most important of his academic life, Harvey also made significant contributions to embryology with the publication of his book Exercitationes de Generatione Animalium in 1651. In this book he established several theories that would set the stage for modern embryology and addressed many embryological issues including conception, embryogenesis, and spontaneous generation.

Format: Articles

Subject: People

Girolamo Fabrici (1537-1619)

Girolamo Fabrici, known as Hieronymus Fabricius in Latin, was given the surname Aquapendente from the city where he was born, near Orvieto, Italy. Born in 1533, Fabrici was the eldest son of a respected noble family, whose coat of arms appears as an illustration in the title page of Fabrici's book on embryology, De formato foetu. Little is known of Fabrici's parents. His father is recorded as Fabricio, and Fabrici is said to have been named for his paternal grandfather.

Format: Articles

Subject: People

Christian Heinrich Pander (1794-1865)

Christian Heinrich Pander, often remembered as the father of embryology, also explored the fields of osteology, zoology, geology, and anatomy. He was born in Riga, Latvia, on 24 July 1794. Pander, with an eclectic history of research, is best remembered for his discovery and explanation of the structure of the chick blastoderm, a term he coined. In doing so, Pander was able to achieve the goal set forth by his teacher, Ignaz Döllinger, to reinvigorate the study of the chick embryo as a means of further exploring the science of embryology as a whole.

Format: Articles

Subject: People

The inductive capacity of oral mesenchyme and its role in tooth development (1969-1970), by Edward J. Kollar and Grace R. Baird

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity.

Format: Articles

Subject: Experiments

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

David Wildt's Evolving Ethics Concerning the Roles of Wildlife Reproductive Sciences in Species Conservation

David Wildt is an animal reproductive biologist who directs the Conservation Biology Institute in Fort Royal, Virginia. In 1986, Wildt argued that artificial reproductive technologies should only be used for species conservation efforts if standard techniques to aid natural reproduction are not effective. Between 1986 and 2001, Wildt revised his views and values primarily in relation to two things: which methods captive breeding programs ought to use, and how reproductive scientists ought to contribute to the larger work of conservation.

Format: Articles

Subject: Ethics

Ericsson Method of Sperm Separation

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes.

Format: Articles

Subject: Technologies

The Whelan Method of Sex Selection

The Whelan Method of Sex Selection is a method for increasing a couple’s probability of conceiving an infant of the desired sex through timing intercourse. Elizabeth Whelan, a public health researcher, suggested that couples only have intercourse at specific times during the woman’s menstrual cycle based on whether they wanted a female or male infant. Whelan published her method in her book, Boy or Girl, in 1977.

Format: Articles

Subject: Technologies

The Mechanistic Conception of Life (1912), by Jacques Loeb

Jacques Loeb published The Mechanistic Conception of Life in 1912. Loeb's goal for the book was to further disseminate his explanations of organic processes, such as embryonic development and organisms orientations to their environments, which relied on physics and chemistry. Loeb also wanted to provide an alternative explanatory framework to vitalism and what he called romantic evolutionism, then both widespread.

Format: Articles

Subject: Publications

Hermann Joseph Muller's Study of X-rays as a Mutagen, (1926-1927)

Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification".

Format: Articles

Subject: Experiments

Cerebral Organoid as a Model System in the Study of Microcephaly

Scientists use cerebral organoids, which are artificially produced miniature organs that represent embryonic or fetal brains and have many properties similar to them, to help them study developmental disorders like microcephaly. In human embryos, cerebral tissue in the form of neuroectoderm appears within the first nine weeks of human development, and it gives rise to the brain and spinal cord.

Format: Articles

Subject: Technologies

Diethylstilbestrol (DES) in the US

Diethylstilbestrol (DES) is an artificially created hormone first synthesized in the late 1930s. Doctors widely prescribed DES first to pregnant women to prevent miscarriages, and later as an emergency contraceptive pill and to treat breast cancer. However, in 1971, physicians showed a link between DES and vaginal cancer during puberty in the children of women who had taken DES while pregnant. Consequently, the US Food and Drug Administration (FDA) banned its use during pregnancy.

Format: Articles

Subject: Reproduction, Technologies

“Pelvic Scoring for Elective Induction” (1964), by Edward Bishop

In the 1964 article, “Pelvic Scoring for Elective Induction,” obstetrician Edward Bishop describes his method to determine whether a doctor should induce labor, or artificially start the birthing process, in a pregnant woman. Aside from medical emergencies, a woman can elect to induce labor to choose when she gives birth and have a shorter than normal labor. The 1964 publication followed an earlier article by Bishop, also about elective induction.

Format: Articles

Subject: Reproduction, Publications

Ooplasmic Transfer Technology

Ooplasmic transfer, also called cytoplasmic transfer, is an outside the body, in vitro fertilization (IVF) technique. Ooplasmic transfer in humans (Homo sapiens) is similar to in vitro fertilization (IVF), with a few additions. IVF is the process in which doctors manually combine an egg and sperm cells in a laboratory dish, as opposed to artificial insemination, which takes place in the female's body. For ooplasmic transfer, doctors withdraw cytoplasm from a donor's oocyte, and then they inject that cytoplasm with sperm into a patient's oocyte.

Format: Articles

Subject: Technologies

General Embryological Information Service, published annually by the Hubrecht Laboratory, 1949-1981

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist in the world. Pieter Nieuwkoop edited each issue from 1949 until 1964, when Job Faber began assisting Nieuwkoop. Bert Z. Salome joined the editing team in 1968 before Nieuwkoop ceased editing duties in 1971.

Format: Articles

Subject: Organizations

Johann Friedrich Meckel, the Younger (1781-1833)

Johann Friedrich Meckel studied abnormal animal and human anatomy in nineteenth century Germany in an attempt to explain embryological development. During Meckel's lifetime he catalogued embryonic malformations in multiple treatises. Meckel's focus on malformations led him to develop concepts like primary and secondary malformations, atavism, and recapitulation- all of which influenced the fields of medicine and embryology during the nineteenth and twentieth centuries.

Format: Articles

Subject: People