Search
Filter by Topic
- People (25) Apply People filter
- Processes (15) Apply Processes filter
- Experiments (14) Apply Experiments filter
- Organisms (4) Apply Organisms filter
- Publications (4) Apply Publications filter
- Technologies (4) Apply Technologies filter
- Theories (3) Apply Theories filter
- Organizations (2) Apply Organizations filter
- Places (1) Apply Places filter
Spemann-Mangold Organizer
The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.
Format: Articles
Subject: Processes
Hilde Mangold (1898-1924)
Hilde Mangold, previously Hilde Proescholdt, was a German embryologist and physiologist who became well known for research completed with Hans Spemann in the 1920s. As a graduate student, Mangold assisted Spemann and together they discovered and coined the term the "organizer." The organizer discovery was a crucial contribution to embryology that led to further understanding of the pattern of embryo differentiation of amphibians.
Format: Articles
Subject: People
Otto Mangold (1891-1962)
Otto Mangold was an early twentieth century embryologist who specialized in the development of amphibian embryos. A major emphasis of his research was refining the concept of the organizer, now referred to as embryonic induction. He was born on 4 November 1891 in Auenstein, Germany, and came from what Viktor Hamburger, a colleague and personal acquaintance, described as "peasant stock." Mangold attended several universities including Tübingen, Freiburg, and Rostock.
Format: Articles
Subject: People
Gustav Jacob Born (1851-1900)
Gustav Jacob Born was an experimental embryologist whose original work with amphibians served as the platform for his wax-plate method of embryo modeling, heteroblastic (different tissues) and xenoplastic (similar species) transplantation methods, environmental influences on sex ratio studies, and proposed function of the corpus luteum. He was born 22 April 1851 in Kempen, Prussia, but his family moved to the larger city of Görlitz within a year after Born's birth. His father was Marcus Born, a physician and public health officer who practiced in the town of Görlitz.
Format: Articles
Subject: People
Gastrulation in Xenopus
The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.
Format: Articles
Subject: Processes
John Spangler Nicholas (1895-1963)
John Spangler Nicholas, an American biologist, was born on 10 March 1895 in Allegheny, Pennsylvania. He was the only child of Elizabeth Ellen Spangler, a teacher, and Samuel Trauger Nicholas, a Lutheran minister. Nicholas held myriad administrative positions throughout his life and his contributions to biology spanned several sub-disciplines, but his most notable accomplishments were in the field of embryology.
Format: Articles
Subject: People
"Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves" (1907), by Ross Granville Harrison
In his 1907 paper, "Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves," in the Journal of Experimental Zoology that he edited, Ross Granville Harrison tested the development of nerves in transplanted tissue. He studied neural development by examining two competing theories. Victor Hensen proposed a syncytial theory as a way to explain neural development, suggesting that all the nerves of an embryo were connected directly by cytoplasm laid down early in development, and leaving no room for later modification.
Format: Articles
Subject: Experiments
"How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs" (2005), by Karen Warkentin
In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their hatch timing had been documented, the specific cues that induce early hatching were not well understood.
Format: Articles
Subject: Experiments, Organisms
Southern Gastric Brooding Frog
The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.
Format: Graphics
Subject: Organisms
Roger Wolcott Sperry (1913–1994)
Roger Wolcott Sperry studied the function of the nervous system in the US during the twentieth century. He studied split-brain patterns in cats and humans that result from separating the two hemispheres of the brain by cutting the corpus callosum, the bridge between the two hemispheres of the brain. He found that separating the corpus callosum the two hemispheres of the brain could not communicate and they performed functions as if the other hemisphere did not exist. Sperry studied optic nerve regeneration through which he developed the chemoaffinity hypothesis.
Format: Articles
Subject: People
The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates
This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.
Format: Graphics
Friedrich Tiedemann (1781-1861)
Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned.
Format: Articles
Subject: People
"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" (1952), by Robert Briggs and Thomas J. King
In 1952 Robert Briggs and Thomas J. King published their article, "Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs," in the Proceedings of the National Academy of Sciences, the culmination of a series of experiments conducted at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia, Pennsylvania. In this paper Briggs and King examined whether nuclei of embryonic cells are differentiated, and by doing so, were the first to conduct a successful nuclear transplantation with amphibian embryos.
Format: Articles
Subject: Experiments
"Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro" (1932), by Conrad Hal Waddington
Conrad Hal Waddington's "Experiments on the Development of Chick and Duck Embryos, Cultivated in vitro," published in 1932 in Philosophical Transactions of the Royal Society of London, Series B, compares the differences in the development of birds and amphibians. Previous experiments focused on the self differentiation of individual tissues in birds, but Waddington wanted to study induction in greater detail. The limit to these studies had been the amount of time an embryo could be successfully cultivated ex vivo.
Format: Articles
Subject: Experiments
Paul Kammerer (1880-1926)
Paul Kammerer conducted experiments on amphibians and marine animals at the Vivarium, a research institute in Vienna, Austria, in the early twentieth century. Kammerer bred organisms in captivity, and he induced them to develop particular adaptations, which Kammerer claimed the organismss offspring would inherit. Kammerer argued that his results demonstrated the inheritance of acquired characteristics, or Lamarckian inheritance. The Lamarckian theory of inheritance posits that individuals transmit acquired traits to their offspring.
Format: Articles
Subject: Experiments, People
Fate Map
Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map.
Format: Articles
Subject: Processes
Johannes Holtfreter (1901-1992)
Johannes Holtfreter made important discoveries about the properties of the organizer discovered by Hans Spemann. Although he spent much time away from the lab over many years, he was a productive researcher. His colleagues noted that the time he spent away helped revitalize his ideas. He is credited with the development of a balanced salt medium to allow embryos to develop; the discovery that dead organizer tissue retains inductive abilities; and the development of specification, competence, and distribution of fate maps in the developing frog embryo.
Format: Articles
Subject: People
Morphogenesis
The term morphogenesis generally refers to the processes by which order is created in the developing organism. This order is achieved as differentiated cells carefully organize into tissues, organs, organ systems, and ultimately the organism as a whole. Questions centered on morphogenesis have aimed to uncover the mechanisms responsible for this organization, and developmental biology textbooks have identified morphogenesis as one of the main challenges in the field. The concept of morphogenesis is intertwined with those of differentiation, growth, and reproduction.
Format: Articles
Subject: Processes
Chemical Induction
Research in chemical induction seeks to identify the compound or compounds responsible for differentiation in a developing embryo. Soren Lovtrup compared the search for these compounds to the search for the philosopher's stone. It was based on the assumption that the differentiating agents have to be chemical substances either within cells or in the extracellular matrix.
Format: Articles
Subject: Processes
Warren Harmon Lewis (1870-1964)
As one of the first to work at the Carnegie Institution of Washington Department of Embryology, Warren Harmon Lewis made a number of contributions to the field of embryology. In addition to his experimental discoveries on muscle development and the eye, Lewis also published and revised numerous works of scientific literature, including papers in the Carnegie Contributions to Embryology and five editions of Gray's Anatomy.
Format: Articles
Subject: People
"Experiments on Embryonic Induction III. A Note on Inductions by Chick Primitive Streak Transplanted to the Rabbit Embryo" (1934), by Conrad Hal Waddington
Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation.
Format: Articles
Subject: Experiments
Embryonic Sex Differentiation and Sex Hormones (1947), by Carl R. Moore
In 1947, Carl Richard Moore, a researcher at the University of Chicago, in Chicago, Illinois, wrote Embryonic Sex Differentiation and Sex Hormones, which was published in the same year as a first-edition monograph. In the book, Moore argues that regulation of sex differentiation in mammals is not controlled by sex hormones secreted by embryonic sex organs (gonads), but is controlled by non-hormonal genetic factors.
Format: Articles
Subject: Publications, Experiments
Ross Granville Harrison (1870-1959)
A pioneer in experimental embryology, Ross Granville Harrison made numerous discoveries that advanced biology. One of the most significant was his adaptation of the hanging drop method from bacteriology to carry out the first tissue culture. This method allowed for further studies in embryology as well as experimental improvements in oncology, virology, genetics, and a number of other fields.
Format: Articles
Subject: People
Fate Mapping Techniques
For more than 2000 years, embryologists, biologists, and philosophers have studied and detailed the processes that follow fertilization. The fertilized egg proliferates into cells that begin to separate into distinct, identifiable zones that will eventually become adult structures through the process of morphogenesis. As the cells continue to multiply, patterns form and cells begin to differentiate, and eventually commit to their fate.
Format: Articles
Subject: Technologies
Hensen's Node
A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.
Format: Articles
Subject: Processes