Search
Filter by Topic
- (-) Remove Processes filter Processes
- Reproduction (21) Apply Reproduction filter
- Theories (11) Apply Theories filter
- Publications (8) Apply Publications filter
- Disorders (7) Apply Disorders filter
- Technologies (7) Apply Technologies filter
- Ethics (5) Apply Ethics filter
- Experiments (4) Apply Experiments filter
- People (3) Apply People filter
- Organisms (1) Apply Organisms filter
- Organizations (1) Apply Organizations filter
Filter by Format
- (-) Remove Articles filter Articles
Pages
- « first
- ‹ previous
- 1
- 2
- 3
- 4
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Circulatory Changes at Birth
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
Format: Articles
Subject: Processes
Mechanistic Realization of the Turtle Shell
Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.
Format: Articles
Subject: Processes
The Carapacial Ridge of Turtles
Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.
Format: Articles
Subject: Processes
Gastrulation in Mus musculus (common house mouse)
As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.
Format: Articles
Subject: Processes, Experiments
Gastrulation in Gallus gallus (Domestic Chicken)
Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.
Format: Articles
Subject: Processes
Hensen's Node
A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.
Format: Articles
Subject: Processes
Somites: Formation and Role in Developing the Body Plan
Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.
Format: Articles
Subject: Processes
Embryonic Differentiation in Animals
Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.
Format: Articles
Subject: Processes
Gastrulation in Xenopus
The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.
Format: Articles
Subject: Processes
Leonardo da Vinci's Embryological Drawings of the Fetus
Leonardo da Vinci's embryological drawings of the fetus in the womb and his accompanying observational annotations are found in the third volume of his private notebooks. The drawings of Leonardo's embryological studies were conducted between the years 1510-1512 and were drawn with black and red chalk with some pen and ink wash on paper. These groundbreaking illustrations of the fetus reveal his advanced understanding of human development and demonstrate his role in the vanguard of embryology during the Renaissance.
Format: Articles
Subject: Processes
Sperm Capacitation
Sperm capacitation refers to the physiological changes spermatozoa must undergo in order to have the ability to penetrate and fertilize an egg. This term was first coined in 1952 by Colin Russell Austin based on independent studies conducted by both Austin himself as well as Min Chueh Chang in 1951. Since the initial reports and emergence of the term, the details of the process have been more clearly elucidated due to technological advancements.
Format: Articles
Subject: Processes
Germ Layers
A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.
Format: Articles
The Process of Implantation of Embryos in Primates
Implantation is a process in which a developing embryo, moving as a blastocyst through a uterus, makes contact with the uterine wall and remains attached to it until birth. The lining of the uterus (endometrium) prepares for the developing blastocyst to attach to it via many internal changes. Without these changes implantation will not occur, and the embryo sloughs off during menstruation. Such implantation is unique to mammals, but not all mammals exhibit it.
Format: Articles
Subject: Processes
Pages
- « first
- ‹ previous
- 1
- 2
- 3
- 4