Search

Displaying 126 - 132 of 132 items.

"Genetic Evidence Equating SRY and the Testis-Determining Factor" (1990), by Phillippe Berta et al.

In the late 1980s, Peter Goodfellow in London, UK led a team of researchers who showed that the SRY gene in humans codes a protein that causes testes to develop in embryos. During this time, scientists in London and Paris, including Peter Koompan and John Gubbay, proposed that SRY was the gene on the Y chromosome responsible for encoding the testis-determining factor (TDF) protein. The TDF is a protein that initiates embryo to develop male characteristics.

Format: Articles

Subject: Experiments

"Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves" (1907), by Ross Granville Harrison

In his 1907 paper, "Experiments in Transplanting Limbs and Their Bearing Upon the Problems of the Development of Nerves," in the Journal of Experimental Zoology that he edited, Ross Granville Harrison tested the development of nerves in transplanted tissue. He studied neural development by examining two competing theories. Victor Hensen proposed a syncytial theory as a way to explain neural development, suggesting that all the nerves of an embryo were connected directly by cytoplasm laid down early in development, and leaving no room for later modification.

Format: Articles

Subject: Experiments

"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" (1952), by Robert Briggs and Thomas J. King

In 1952 Robert Briggs and Thomas J. King published their article, "Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs," in the Proceedings of the National Academy of Sciences, the culmination of a series of experiments conducted at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia, Pennsylvania. In this paper Briggs and King examined whether nuclei of embryonic cells are differentiated, and by doing so, were the first to conduct a successful nuclear transplantation with amphibian embryos.

Format: Articles

Subject: Experiments

"Male Development of Chromosomally Female Mice Transgenic for Sry gene" (1991), by Peter Koopman, et al.

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a segment of the mouse Sry gene, which is analogous to the human SRY gene. The researchers sought to identify Sry gene as the gene that produced the testis determining factor protein (Tdf protein in mice or TDF protein in humans), which initiates the formation of testis.

Format: Articles

Subject: Experiments

Paul Kammerer's Experiments on Salamanders (1903-1912)

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding salamanders, as well as frogs and other organisms, Kammerer tested Lamarck's hypothesis in an attempt to provide evidence for Lamarck's theory of the inheritance of acquired characteristics.

Format: Articles

Subject: Experiments

Paul Kammerer's Experiments on Sea-squirts in the Early Twentieth Century

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents.

Format: Articles

Subject: Experiments, Organisms

Alec Jeffreys’s Experiments to Identify Individuals by Their Beta-globin Genes (1977-1979)

In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples.

Format: Articles

Subject: Experiments