Search

Displaying 1 - 6 of 6 items.

The Effects of Thalidomide on Embryonic Development

Embryogenesis is an intricate process that can easily be disrupted by means of teratogenic agents. Some of these agents target the embryonic period's "window of susceptibility," three to eight weeks after a pregnant woman's last menstruation, when the highest degree of sensitivity to embryonic cell differentiation and organ formation occurs. The embryonic period or critical period is when most organ systems form, whereas the fetal period, week eight to birth, involves the growth and modeling of the organ systems.

Format: Articles

Subject: Processes, Disorders

Studies of Thalidomide's Effects on Rodent Embryos from 1962-2008

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests.

Format: Articles

Subject: Organisms, Reproduction, Disorders

Green Fluorescent Protein

Green fluorescent protein (GFP) is a protein in the jellyfish Aequorea Victoria that exhibits green fluorescence when exposed to light. The protein has 238 amino acids, three of them (Numbers 65 to 67) form a structure that emits visible green fluorescent light. In the jellyfish, GFP interacts with another protein, called aequorin, which emits blue light when added with calcium. Biologists use GFP to study cells in embryos and fetuses during developmental processes.

Format: Articles

Subject: Technologies

Christian Peeters and Bert Hölldobler's Experiments on Reproduction in Indian Jumping Ants (1991–1994)

Between 1991 and 1994, Christian Peeters and Bert Hölldobler studied the reproductive behaviors of the Indian jumping ant (Harpegnathos saltator), a species native to southern India. They conducted experiments as part of a larger investigation into conflict and reproductive behavior among ants. Peeters and Hölldobler discovered that Indian jumping ant colonies contained both sexually reproductive workers and egg-laying queens. In most other species of ant, the queens are the only sexually reproductive individuals.

Format: Articles

Subject: Experiments

Ian Hector Frazer (1953– )

Ian Hector Frazer studied the human immune system and vaccines in Brisbane, Australia, and helped invent and patent the scientific process and technology behind what later became the human papillomavirus, or HPV, vaccinations. According to the Centers for Disease Control and Prevention of the US, or CDC, HPV is the most common sexually transmitted infection, and can lead to genital warts, as well as cervical, head, mouth, and neck cancers.

Format: Articles

Subject: People

HeLa Cell Line

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans.

Format: Articles

Subject: Technologies, Experiments, People, Ethics