Search

Displaying 26 - 50 of 1005 items.

Julia Bell (1879-1979)

Julia Bell worked in twentieth-century Britain, discovered Fragile X Syndrome, and helped find heritable elements of other developmental and genetic disorders. Bell also wrote much of the five volume Treasury of Human Inheritance, a collection about genetics and genetic disorders. Bell researched until late in life, authoring an original research article on the effects of the rubella virus of fetal development (Congenital Rubella Syndrome) at the age of 80.

Format: Articles

Subject: People

“Effect of Vaginal Sildenafil on the Outcome of In Vitro Fertilization (IVF) After Multiple IVF Failures Attributed to Poor Endometrial Development” (2002), by Geoffrey Sher and Jeffrey Fisch

Researchers Geoffrey Sher and Jeffrey Fisch gave Viagra, also known as sildenafil, to women undergoing fertility treatment to test whether the medication could improve fertility and pregnancy rates. The researchers proposed that Viagra, typically indicated to treat erectile dysfunction in men, would help women with a history of failed past fertility treatments by thickening their endometrial lining, which is the layer of tissue in the uterus where an embryo implants during pregnancy.

Format: Articles

Subject: Experiments, Reproduction, Disorders

“Sex Limited Inheritance in Drosophila” (1910), by Thomas Hunt Morgan

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males.

Format: Articles

Subject: Experiments, Publications

“A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-Culture Cells” (1972), by Peter Mazur, Stanley Leibo, and Ernest Chu

In 1972, Peter Mazur, Stanley Leibo, and Ernest Chu published, “A Two-Factor Hypothesis of Freezing Injury: Evidence from Chinese Hamster Tissue-culture Cells,” hereafter, “A Two-Factor Hypothesis of Freezing Injury,” in the journal, Experimental Cell Research. In the article, the authors uncover that exposure to high salt concentrations and the formation of ice crystals within cells are two factors that can harm cells during cryopreservation. Cryopreservation is the freezing of cells to preserve them for storage, study, or later use.

Format: Articles

Subject: Publications, Theories

"Embryonic Stem Cell Lines Derived from Human Blastocytes" (1998), by James Thomson

After becoming chief pathologist at the University of Wisconsin-Madison Wisconsin Regional Primate Center in 1995, James A. Thomson began his pioneering work in deriving embryonic stem cells from isolated embryos. That same year, Thomson published his first paper, "Isolation of a Primate Embryonic Stem Cell Line," in Proceedings of the National Academy of Sciences of the United States of America, detailing the first derivation of primate embryonic stem cells. In the following years, Thomson and his team of scientists - Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A.

Format: Articles

Subject: Experiments, Publications

Human Embryonic Stem Cells

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions.

Format: Articles

Subject: Processes, Reproduction

The Germ-Plasm: a Theory of Heredity (1893), by August Weismann

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the

Format: Articles

Subject: Publications, Theories

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis (CF). Tsui's research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in the cell membrane in epithelial tissues and affects multiple organ systems in the human body. Mutations in the CFTR gene cause dysfunctional regulation of cell electrolytes and water content.

Format: Articles

Subject: Disorders, Reproduction

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

President George W. Bush's Announcement on Stem Cells, 9 August 2001

On 9 August 2001, US President George W. Bush gave an eleven-minute speech from his ranch in Crawford, Texas, on the ethics and fate of federal funding for stem cell research. Bush also announced the creation of a special council to oversee stem cell research. In the speech President Bush acknowledged the importance of issues surrounding stem cell research to many Americans, presented different arguments in favor of and opposing embryonic stem cell research, and explained his decision to limit but not completely eliminate potential federal funding for embryonic stem cell (ESC) research.

Format: Articles

Subject: Legal

Amphioxus, and the Mosaic Theory of Development (1893), by Edmund Beecher Wilson

Edmund Beecher Wilson experimented with Amphioxus (Branchiostoma) embryos in 1892 to identify what caused their cells to differentiate into new types of cells during the process of development. Wilson shook apart the cells at early stages of embryonic development, and he observed the development of the isolated cells. He observed that in the normal development of Amphioxus, all three main types of symmetry, or cleavage patterns observed in embryos, could be found. Wilson proposed a hypothesis that reformed the Mosaic Theory associated with Wilhelm Roux in Germany.

Format: Articles

Subject: Experiments

Matthew Howard Kaufman (1942–2013)

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time.

Format: Articles

Subject: People

"Development, Plasticity and Evolution of Butterfly Eyespot Patterns" (1996), by Paul M. Brakefield et al.

Paul M. Brakefield and his research team in Leiden, the Netherlands, examined the development, plasticity, and evolution of butterfly eyespot patterns, and published their findings in Nature in 1996. Eyespots are eye-shaped color patterns that appear on the wings of some butterflies and birds as well as on the skin of some fish and reptiles. In butterflies, such as the peacock butterfly Aglais, the eyespots resemble the eyes of birds and help butterflies deter potential predators.

Format: Articles

Subject: Experiments

"Experiments in Plant Hybridization" (1866), by Johann Gregor Mendel

During the mid-nineteenth century, Johann Gregor Mendel experimented with pea plants to develop a theory of inheritance. In 1843, while a monk in the Augustian St Thomas's Abbey in Brünn, Austria, now Brno, Czech Repubic, Mendel examined the physical appearance of the abbey's pea plants (Pisum sativum) and noted inconsistencies between what he saw and what the blending theory of inheritance, a primary model of inheritance at the time, predicted.

Format: Articles

Subject: Experiments

Somites: Formation and Role in Developing the Body Plan

Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.

Format: Articles

Subject: Processes

Charles Darwin's Theory of Pangenesis

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by all cells of the body. The theory suggested that an organism's environment could modify the gemmules in any parts of the body, and that these modified gemmules would congregate in the reproductive organs of parents to be passed on to their offspring.

Format: Articles

Subject: Theories

In the Womb (2005), by Toby Mcdonald and National Geographic Channel

Written, produced, and directed by Toby Mcdonald, the 2005 National Geographic Channel film In the Womb uses the most recent technology to provide an intricate glimpse into the prenatal world. The technologies used, which include advanced photography, computer graphics, and 4-D ultrasound imaging, help to realistically illustrate the process of development and to answer questions about the rarely seen development of a human being.

Format: Articles

Subject: Outreach, Reproduction

Life's Greatest Miracle (2001), by Julia Cort and NOVA

The Public Broadcasting Station (PBS) documentary Life's Greatest Miracle (abbreviated Miracle, available at http://www.pbs.org/wgbh/nova/miracle/program.html), is arguably one of the most vivid illustrations of the making of new human life. Presented as part of the PBS television series NOVA, Miracle is a little less than an hour long and was first aired 20 November 2001. The program was written and produced by Julia Cort and features images by renowned Swedish photographer Lennart Nilsson.

Format: Articles

Subject: Outreach, Reproduction

Edward Drinker Cope's Law of Acceleration of Growth

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional theory to natural selection.

Format: Articles

Subject: Theories

Wilhelm Friedrich Phillip Pfeffer (1845-1920)

Wilhelm Friedrich Phillip Pfeffer studied plants in Germany during the late nineteenth and early twentieth centuries. He started his career as an apothecary, but Pfeffer also studied plant physiology, including how plants move and react to changes in light, temperature, and osmotic pressure. He created the Pfeffer Zelle apparatus, also known as the Pfeffer Cell, to study osmosis in plants. PfefferÕs experiments led to new theories about the structure and development of plants.

Format: Articles

Subject: People

Aristotle (384-322 BCE)

Aristotle studied developing organisms, among other things, in ancient Greece, and his writings shaped Western philosophy and natural science for greater than two thousand years. He spent much of his life in Greece and studied with Plato at Plato's Academy in Athens, where he later established his own school called the Lyceum. Aristotle wrote greater than 150 treatises on subjects ranging from aesthetics, politics, ethics, and natural philosophy, which include physics and biology. Less than fifty of Aristotle's treatises persisted into the twenty-first century.

Format: Articles

Subject: People

Mitochondrial Diseases in Humans

Mitochondrial diseases in humans result when the small organelles called mitochondria, which exist in all human cells, fail to function normally. The mitochondria contain their own mitochondrial DNA (mtDNA) separate from the cell's nuclear DNA (nDNA). The main function of mitochondria is to produce energy for the cell. They also function in a diverse set of mechanisms such as calcium hemostasis, cell signaling, regulation of programmed cell death (apoptosis), and biosynthesis of heme proteins that carry oxygen.

Format: Articles

Subject: Disorders, Reproduction

The inductive capacity of oral mesenchyme and its role in tooth development (1969-1970), by Edward J. Kollar and Grace R. Baird

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity.

Format: Articles

Subject: Experiments

Telomerase in Human Development

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely.

Format: Articles

Subject: Theories

"The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis" (2002), by James M. Cummins

James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA).

Format: Articles

Subject: Publications