Search

Displaying 1 - 17 of 17 items.

Biological Clocks and the Formation of Human Tooth Enamel

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity.

Format: Articles

Subject: Processes

Germ Layers

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.

Format: Articles

Subject: Theories, Processes

Mesoderm

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.

Format: Articles

Subject: Processes

Spemann-Mangold Organizer

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.

Format: Articles

Subject: Processes

Endothelium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body.

Format: Articles

Subject: Processes, Theories

Mesenchyme

Mesenchyme is a type of animal tissue comprised of loose cells embedded in a mesh of proteins and fluid, called the extracellular matrix. The loose, fluid nature of mesenchyme allows its cells to migrate easily and play a crucial role in the origin and development of morphological structures during the embryonic and fetal stages of animal life. Mesenchyme directly gives rise to most of the body's connective tissues, from bones and cartilage to the lymphatic and circulatory systems.

Format: Articles

Subject: Processes

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes

The Notch Signaling Pathway in Embryogenesis

The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.

Format: Articles

Subject: Processes

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

Teratomas

Teratomas are embryonal tumors that normally arise from germ cells and are typically benign. They are defined as being composed either of tissues that are foreign to the area in which they form, or of tissues that derive from all three of the germ layers. Malignant teratomas are known as teratocarcinomas; these cancerous growths have played a pivotal role in the discovery of stem cells. "Teratoma" is Greek for "monstrous tumor"; these tumors were so named because they sometimes contain hair, teeth, bone, neurons, and even eyes.

Format: Articles

Subject: Processes, Disorders

Circulatory Changes at Birth

When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.

Format: Articles

Subject: Processes

James G. Wilson's Six Principles of Teratology

James Graves Wilson's six principles of teratology, published in 1959, guide research on teratogenic agents and their effects on developing organisms. Wilson's six principles were inspired by Gabriel Madeleine Camille Dareste's five principles of experimental teratology published in 1877. Teratology is the study of birth defects, and a teratogen is something that either induces or amplifies abnormal embryonic or fetal development and causes birth defects.

Format: Articles

Subject: Processes, Reproduction

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Somatic Cell Nuclear Transfer in Mammals (1938-2013)

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists

Format: Articles

Subject: Theories, Technologies, Processes

Regeneration

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!

Format: Articles

Subject: Processes