Search

Displaying 1 - 25 of 86 items.

Pages

Craig C. Mello (1960- )

Craig C. Mello is an American developmental biologist and Nobel Laureate, who helped discover RNA interference (RNAi). Along with his colleague Andrew Fire, he developed gene knockouts using RNAi. In 006 Mello won the Nobel Prize in Physiology or Medicine for his contribution. Mello also contributed to developmental biology, focusing on gene regulation, cell signaling, cleavage formation, germline determination, cell migration, cell fate differentiation, and morphogenesis.

Format: Articles

Subject: People

Andrew Zachary Fire (1959- )

Andrew Zachary Fire is a professor at Stanford University and Nobel Laureate. Fire worked at the Carnegie Institution of Washington's Department of Embryology in Baltimore, Maryland, with colleague Craig Mello, where they discovered that RNA molecules could be used to turn off or knock out the expression of genes. Fire and Mello called the process RNA interference (RNAi), and won the Nobel Prize in Physiology or Medicine in 2006 for their discovery.

Format: Articles

Subject: People

Victor Ambros (1953-)

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s development and embryogenesis. His discovery of miRNA marked the beginning of research into a form of genetic regulation found throughout diverse life forms from plants to humans. Ambros is a central figure in the miRNA and C.

Format: Articles

Subject: People

The Effects of Gene Regulation on Aging in Caenorhabditis elegans (2003)

In 2003, molecular biology and genetics researchers Coleen T. Murphy, Steven A. McCarroll, Cornelia I. Bargmann, Andrew Fraser, Ravi S. Kamath, Julie Ahringer, Hao Li, and Cynthia Kenyon conducted an experiment that investigated the cellular aging in, Caenorhabditis elegans (C. elegans) nematodes. The researchers investigated the interactions between the transcription factor DAF-16 and the genes that regulate the production of an insulin-like growth factor 1 (IGF-1-like) protein related to the development, reproduction, and aging in C. elegans.

Format: Articles

Subject: Experiments

"RNA-Guided Human Genome Engineering via Cas 9" (2013), by Prashant Mali, Luhan Yang, Kevin M. Esvelt, John Aach, Marc Guell, James E. DiCarlo, Julie E. Norville, and George M. Church

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells.

Format: Articles

Subject: Publications

CRISPR Acquired Resistance Against Viruses (2007)

In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or viruses that infect bacteria. Horvath and his colleagues found that the bacteria used to culture yogurt, Streptococcus thermophilus, has an adaptive immune system that can target specific viruses that have previously infected the bacteria.

Format: Articles

Subject: Experiments

David Baltimore (1938– )

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma of biology at the time, which stated that the transfer of information was unidirectional from DNA, RNA, to protein.

Format: Articles

Subject: People

The Development of Mifepristone for Use in Medication Abortions

In the 1980s, researchers at the pharmaceutical company Roussel-Uclaf in Paris, France, helped develop a biological compound called mifepristone. When a woman takes it, mifepristone interferes with the function of hormones involved in pregnancy and it can therefore be used to terminate pregnancies. In 2000, the US Food and Drug Administration approved mifepristone, also called RU 486, as part of a treatment to induce abortions using drugs instead of surgery, a method called medication abortion.

Format: Articles

Subject: Reproduction

"A molecular wound response program associated with regeneration initiation in planarians" (2012), by Danielle Wenemoser et al.

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration.

Format: Articles

Subject: Experiments

"CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes" (2015), by Junjiu Huang et al.

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are sperm-fertilized eggs that cannot develop into a fetus. Researchers previously developed the CRISPR/cas 9 gene editing tool, which is a system that originated from bacteria as a defense mechanism against viruses.

Format: Articles

Subject: Publications, Experiments

Christiane Nusslein-Volhard (1942- )

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B.

Format: Articles

Subject: People

Carol Widney Greider (1961-)

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of

Subject: People

Sex-determining Region Y in Mammals

The Sex-determining Region Y (Sry in mammals but SRY in humans) is a gene found on Y chromosomes that leads to the development of male phenotypes, such as testes. The Sry gene, located on the short branch of the Y chromosome, initiates male embryonic development in the XY sex determination system. The Sry gene follows the central dogma of molecular biology; the DNA encoding the gene is transcribed into messenger RNA, which then produces a single Sry protein.

Format: Articles

Subject: Processes

Charles Robert Cantor (1942- )

Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a technique that Cantor subsequently used to describe nucleotide sequences of DNA, a process called sequencing, in humans. Cantor was the principal scientist for the Human Genome Project, for which scientists sequenced the entirety of the human genome in 2003.

Format: Articles

Subject: People, Reproduction

Mechanism of Notch Signaling

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks).

Format: Graphics

Subject: Theories, Processes

"Gene Regulation for Higher Cells: A Theory" (1969), by Roy J. Britten and Eric H. Davidson

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Format: Articles

Subject: Publications

Francis Harry Compton Crick (1916-2004)

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson and Maurice Wilkins in 1962 for their discovery of the molecular structure of DNA.

Format: Articles

Subject: People

The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the synthesis of B-galactosidase" (1959), by Arthur B. Pardee, Francois Jacob, and Jacques Monod

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria.

Format: Articles

Subject: Experiments

Lysogenic Bacteria as an Experimental Model at the Pasteur Institute (1915-1965)

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists.

Format: Articles

Subject: Organisms, Experiments

"A Genomic Regulatory Network for Development" (2002), by Eric H. Davidson, et al.

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before.

Format: Articles

Subject: Publications

"The Limited In Vitro Lifetime of Human Diploid Cell Strains" (1964), by Leonard Hayflick

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after the Wistar Institute, in Philadelphia, Pennsylvania, where Hayflick worked. Frank MacFarlane Burnet, later called the limit in capacity for cellular division the Hayflick Limit in 1974.

Format: Articles

Subject: Experiments

Oswald Theodore Avery (1877-1955)

Oswald Theodore Avery studied strains of pneumococcus of the genus Streptococcus in the US in the first half of the twentieth century. This bacterium causes pneumonia, a common cause of death at the turn of the twentieth century. In a 1944 paper, Avery demonstrated with colleagues Colin Munro MacLeod and Maclyn McCarty that deoxyribonucleic acid, or DNA, instead of protein, formed the material of heritable transformation in bacteria. Avery helped untangle some of the relationships between genes and developmental processes.

Subject: People

Environment and Birth Defects (1973), by James G. Wilson

Environment and Birth Defects by James Graves Wilson in the US was published in 1973. The book summarized information on the causes of malformations in newborns and aimed to acquaint policy makers with Wilson's suggestions for predicting the risks of environmental causes of birth defects, called teratogens. Wilson also provided six principles for researching teratogens, a framework revised from his 1959 article Experimental Studies on Congenital Malformations. The book has ten chapters.

Format: Articles

Subject: Publications

Jennifer Doudna and Emmanuelle Charpentier’s Experiment About the CRISPR/cas 9 System’s Role in Adaptive Bacterial Immunity (2012)

In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool.

Format: Articles

Subject: Experiments

Elizabeth Blackburn, Carol Greider and Jack Szostak's Telomere and Telomerase Experiments (1982-1989)

Experiments conducted by Elizabeth Blackburn, Carol Greider, and Jack Szostak from 1982 to 1989 provided theories of how the ends of chromosomes, called telomeres, and the enzyme that repairs telomeres, called telomerase, worked. The experiments took place at the Sidney Farber Cancer Institute and at Harvard Medical School in Boston, Massachusetts, and at the University of California in Berkeley, California. For their research on telomeres and telomerase, Blackburn, Greider, and Szostak received the Nobel Prize in Physiology or Medicine in 2009.

Format: Articles

Subject: Experiments

Pages