Search
Filter by Topic
- (-) Remove Processes filter Processes
- Theories (27) Apply Theories filter
- Reproduction (22) Apply Reproduction filter
- Organisms (10) Apply Organisms filter
- Publications (9) Apply Publications filter
- Technologies (9) Apply Technologies filter
- Disorders (7) Apply Disorders filter
- Ethics (5) Apply Ethics filter
- Experiments (4) Apply Experiments filter
- People (3) Apply People filter
- Organizations (1) Apply Organizations filter
The Development of the Neural Crest and the Migration of Neural Crest Cells (NCCs) in the Embryos of Various Vertebrates
This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.
Format: Graphics
Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers
From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.
Format: Graphics
Gastrulation in Mus musculus (common house mouse)
As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.
Format: Articles
Subject: Processes, Experiments
Hartsoeker's Homunculus Sketch from Essai de Dioptrique
This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell.
Format: Articles
The Role of the Notch signaling pathway in Somitogenesis
Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.
Format: Articles
Sperm Capacitation
The male body, followed by male reproductive organs from which the sperm originates, is depicted from top to bottom at the left. Under the male reproductive organs is a diagram of a single sperm. To the right of the sperm diagram, the physiological and morphological changes a sperm undergoes to fertilize an egg are depicted from left to right. Each change is associated with a light pink rectangle background. Each light pink rectangle corresponds to the location of the sperm within the female reproductive organs, which is depicted above it.
Format: Graphics
“All-fours Maneuver for Reducing Shoulder Dystocia During Labor” (1999), by Joseph P. Bruner, Susan B. Drummond, Anna L. Meenan, and Ina May Gaskin
In 1999, Joseph Bruner, Susan B. Drummond, Anna L. Meenan, and Ina May Gaskin published, “All-fours Maneuver for Reducing Shoulder Dystocia During Labor,” in the medical journal, Obstetrical and Gynecological Survey. In the article, the authors described a birthing technique named the all-fours maneuver, or the Gaskin maneuver, and explained its effectiveness in treating fetal shoulder dystocia as compared to other maneuvers.
Format: Articles
Subject: Publications, Processes
“The Prophylactic Forceps Operation” (1920), by Joseph Bolivar DeLee
In 1920, Joseph Bolivar DeLee published the article, “The Prophylactic Forceps Operation,” in which he describes how physicians can manually remove a neonate from a laboring woman’s vagina with the use of sedating drugs and forceps. The procedure, according to DeLee, resulted in decreased rates of complications and mortality for both the woman and neonate. DeLee claimed the procedure could reduce damage to the woman such as prolapse, or when internal pelvic organs push down and sometimes protrude from the vagina, and fatal infant brain bleeding.
Format: Articles
Subject: Publications, Processes
Germ Layers
A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm.
Format: Articles
Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)
In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.
Format: Articles
Subject: Experiments, Theories, Processes
A Fate Map of the Chick Embryo
A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.
Format: Graphics
The Blastoderm in Chicks During Early Gastrulation
This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.
Format: Graphics
Neurospora crassa Life Cycle
This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium.
Format: Graphics
Fruit Fly Life Cycle
Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva.
Format: Graphics
The Process of Gastrulation in Frog Embryos
Illustration of the movement of the three hemispheres of cells, the animal cap (dark green) the marginal zone (lime green) and the ventral cap (yellow) during frog gastrulation. The external view column (images a.1-a.6) shows gastrulation as it occurs on the outside of the embryo. The cross-section view column (images b.1-b.6) shows the internal view of gastrulation. The cross-sections are through the middle of the embryo.
Format: Graphics
Frog Embryo in the Blastula Stage
Illustration of the animal-vegetal gradient in Xenopus laevis ( African clawed frog) eggs after fertilization. During fertilization, the sperm s point of entry determines the future dorsal side (shaded) and ventral side (unshaded) of the embryo. The prospective ventral side of the embryo forms on the side where the sperm enters while the prospective dorsal side forms opposite the sperm s point of entry.
Format: Graphics
Quickening
Quickening, the point at which a pregnant woman can first feel the movements of the growing embryo or fetus, has long been considered a pivotal moment in pregnancy. Over time, this experience has been used in a variety of contexts, ranging from representing the point of ensoulment to determining whether an abortion was legal to indicating the gender of the unborn baby; philosophy, theology, and law all address the idea of quickening in detail. Beginning with Aristotle, quickening divided the developmental stages of embryo and fetus.
Format: Articles
Subject: Processes, Ethics, Reproduction
Abortion
Abortion is the removal of the embryo or fetus from the womb, before birth can occur-either naturally or by induced labor. Prenatal development occurs in three stages: the zygote, or fertilized egg; the embryo, from post-conception to eight weeks; and the fetus, from eight weeks after conception until the baby is born. After abortion, the infant does not and cannot live. Spontaneous abortion is the loss of the infant naturally or accidentally, without the will of the mother. It is more commonly referred to as miscarriage.
Format: Articles
Subject: Processes, Ethics, Reproduction
Test-Tube Baby
A test-tube baby is the product of a successful human reproduction that results from methods beyond sexual intercourse between a man and a woman and instead utilizes medical intervention that manipulates both the egg and sperm cells for successful fertilization. The term was originally used to refer to the babies born from the earliest applications of artificial insemination and has now been expanded to refer to children born through the use of in vitro fertilization, the practice of fertilizing an embryo outside of a woman's body.
Format: Articles
Subject: Processes, Ethics, Reproduction
Fetal Programming
Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England.
Format: Articles
Subject: Processes, Theories, Reproduction
Estrogen
The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.
Format: Graphics
Subject: Theories, Processes, Reproduction
“Pelvic Organ Prolapse Quantification System (POP-Q) - A New Era in Pelvic Prolapse Staging” (2011), by Cristian Persu, Christopher Chapple, Victor Cauni, Stefan Gutue, and Petrisor Geavlete
In 2011, Cristian Persu, Christopher Chapple, Victor Cauni, Stefan Gutue, and Petrisor Geavlete published “Pelvic Organ Prolapse Quantification System (POP-Q) – A New Era in Pelvic Prolapse Staging,” in the Journal of Medicine and Life. In their article, the authors explain the need for a reliable diagnostic method for describing the state of a pelvic organ prolapse, or a condition that can result from weakness or damage to the muscles that support the pelvic organs, sometimes leading to bladder, bowel, and sexual dysfunction.
Format: Articles
Subject: Publications, Processes, Reproduction
“Pregnancy Established in an Infertile Patient After Transfer of a Donated Embryo Fertilized In Vitro” (1983), by Alan Trounson, John Leeton, Mandy Besanko, Carl Wood, and Angelo Conti
In 1983, researchers Alan Trounson, John Leeton, Carl Wood, Mandy Besanko, and Angelo Conti published the article “Pregnancy Established in an Infertile Patient After Transfer of a Donated Embryo Fertilized In Vitro” in The British Medical Journal. In the article, the authors discuss one of the first successful experiments using in vitro fertilization, or IVF, with the use of a human donor embryo at the Monash University and Queen Victoria Medical Center in Melbourne, Australia.
Format: Articles
Subject: Publications, Publications, Reproduction, Processes