Search
Filter by Topic
- People (298) Apply People filter
- Reproduction (271) Apply Reproduction filter
- Publications (163) Apply Publications filter
- Disorders (99) Apply Disorders filter
- Legal (96) Apply Legal filter
- Technologies (96) Apply Technologies filter
- Experiments (83) Apply Experiments filter
- Processes (64) Apply Processes filter
- Theories (61) Apply Theories filter
- Organizations (56) Apply Organizations filter
- Ethics (47) Apply Ethics filter
- Outreach (34) Apply Outreach filter
- Religion (19) Apply Religion filter
- Reproductive Health Arizona (9) Apply Reproductive Health Arizona filter
- Organisms (8) Apply Organisms filter
- Places (3) Apply Places filter
- RHAZ (2) Apply RHAZ filter
- DNA (1) Apply DNA filter
- Technology (1) Apply Technology filter
Filter by Format
- (-) Remove Articles filter Articles
Amenorrhea as a Menstrual Disorder
Amenorrhea is considered a type of abnormal menstrual bleeding characterized by the unexpected absence of menstrual bleeding, lasting three months or longer. Menstrual bleeding typically happens approximately once a month when blood and endometrial tissue, or tissue lining the inside of the uterus, sheds from the uterus through the vagina. Menstruation is expected to stop with pregnancy, breastfeeding, and menopause, or the natural cessation of the menstrual cycle at an older age.
Format: Articles
Subject: Disorders, Reproduction
Conjoined Twins
Conjoined twins are twins whose bodies are anatomically joined in utero. The degree to which the twins are attached can range from simple, involving skin and cartilage, to complex, including fusion of the skull(s), brain(s), or other vital organs. There are more than a dozen classifications of conjoined twins but what they all tend to have in common is the sharing of the chorion, placenta, and amniotic sac.
Format: Articles
Subject: Disorders, Reproduction
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene was identified in 1989 by geneticist Lap-Chee Tsui and his research team as the gene associated with cystic fibrosis (CF). Tsui's research pinpointed the gene, some mutations to which cause CF, and it revealed the underlying disease mechanism. The CFTR gene encodes a protein in the cell membrane in epithelial tissues and affects multiple organ systems in the human body. Mutations in the CFTR gene cause dysfunctional regulation of cell electrolytes and water content.
Format: Articles
Subject: Disorders, Reproduction
Cocaine as a Teratogen
Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one of the most commonly used drugs in the US and it has a history of both medical and illegal recreational use. It is a drug capable of a wide array of effects on physical and mental health.
Format: Articles
Subject: Reproduction, Disorders
Gestational Diabetes
Gestational diabetes is a medical condition that causes blood sugar levels to become abnormally high, which manifests for the first-time during pregnancy and typically disappears immediately after birth for around ninety percent of affected women. While many women with the condition do not experience any noticeable symptoms, some may experience increased thirst and urination.
Format: Articles
Subject: Reproduction, Disorders
Methylmercury and Human Embryonic Development
Methylmercury (MeHg) is an organic form of mercury that can damage the developing brains of human fetuses. Women who consume methylmercury during pregnancy can bear children who have neurological issues because methylmercury has toxic effects on the nervous system during embryonic development. During the third week of gestation, the human nervous system begins to form in the embryo. During this gestational period, the embryo's nervous system is particularly susceptible to the influence of neurotoxins like methylmercury that can result in abnormalities.
Format: Articles
Subject: Reproduction, Disorders
The Effects of Bisphenol A on Embryonic Development
Bisphenol A (BPA) is an organic compound that was first synthesized by Aleksandr Dianin, a Russian chemist from St. Petersburg, in 1891. The chemical nomenclature of BPA is 2,2-bis (4-hydroxyphenyl) propane. The significance of this synthesized compound did not receive much attention until 1936, when two biochemists interested in endocrinology, Edward Dodds and William Lawson, discovered its ability to act as an estrogen agonist in ovariectomized, estrogen-deficient rats.
Format: Articles
Subject: Disorders, Reproduction
Effects of Prenatal Alcohol Exposure on Central Nervous System Development
Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) is part of this group and was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities and defects of the central nervous system (CNS). The CNS is particularly vulnerable to the effects of ethanol during prenatal development.
Format: Articles
Subject: Disorders, Reproduction
Mitochondrial Diseases in Humans
Mitochondrial diseases in humans result when the small organelles called mitochondria, which exist in all human cells, fail to function normally. The mitochondria contain their own mitochondrial DNA (mtDNA) separate from the cell's nuclear DNA (nDNA). The main function of mitochondria is to produce energy for the cell. They also function in a diverse set of mechanisms such as calcium hemostasis, cell signaling, regulation of programmed cell death (apoptosis), and biosynthesis of heme proteins that carry oxygen.
Format: Articles
Subject: Disorders, Reproduction
Twin-to-Twin Transfusion Syndrome
Twin-to-Twin Transfusion Syndrome (TTTS) is a rare placental disease that can occur at any time during pregnancy involving identical twins. TTTS occurs when there is an unequal distribution of placental blood vessels between fetuses, which leads to a disproportionate supply of blood delivered. This unequal allocation of blood leads to developmental problems in both fetuses that can range in severity depending on the type, direction, and number of interconnected blood vessels.
Format: Articles
Subject: Disorders, Reproduction
Effect of Prenatal Alcohol Exposure on Radial Glial Cells
Prenatal alcohol (ethanol) exposure can have dramatic effects on the development of the central nervous system (CNS), including morphological abnormalities and an overall reduction in white matter of the brain. The impact of ethanol on neural stem cells such as radial glia (RG) has proven to be a significant cause of these defects, interfering with the creation and migration of neurons and glial cells during development.
Format: Articles
Subject: Disorders, Reproduction
Developmental Timeline of Alcohol-Induced Birth Defects
Maternal consumption of alcohol (ethanol) during pregnancy can result in a continuum of embryonic developmental abnormalities that vary depending on the severity, duration, and frequency of exposure of ethanol during gestation. Alcohol is a teratogen, an environmental agent that impacts the normal development of an embryo or fetus. In addition to dose-related concerns, factors such as maternal genetics and metabolism and the timing of alcohol exposure during prenatal development also impact alcohol-related birth defects.
Format: Articles
Subject: Disorders, Reproduction
Corpus Callosum Defects Associated with Fetal Alcohol Syndrome
Prenatal exposure to alcohol (ethanol) can result in a continuum of developmental abnormalities that are highly variable depending on the severity, duration, frequency, and timing of exposure during gestation. Defects of the corpus callosum (CC) have proven to be a reliable indicator of prenatal alcohol exposure as it affects the brain. Structural abnormalities of the CC occur along a continuum, like most alcohol-induced anomalies, whereby more severe prenatal exposure results in a greater expression of the abnormal trait.
Format: Articles
Subject: Disorders, Reproduction
Congenital Vertebral Defects
The spinal column is the central structure in the vertebrate body from which stability, movement, and posture all derive. The vertebrae of the spine are organized into four regions (listed in order from cranial to caudal): cervical, thoracic, lumbar, and pelvic. These regions are classified by their differences in curvature. The human spine usually consists of thirty-three vertebrae, seven of which are cervical (C1-C7), twelve are thoracic (T1-T12), five are lumbar (L1-L5), and nine are pelvic (five fused as the sacrum and four fused as the coccyx).
Format: Articles
Subject: Disorders, Reproduction
Effects of Prenatal Alcohol Exposure on Cardiac Development
A variety of developmental defects occur as a result of prenatal exposure to alcohol (ethanol) in utero. In humans, those defects are collectively classified as Fetal Alcohol Spectrum Disorders, with Fetal Alcohol Syndrome (FAS) representing the more severe defects. FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). In addition to those defects, prenatal exposure to alcohol impacts cardiogenesis, the developmental stage of heart formation.
Format: Articles
Subject: Disorders, Reproduction
The Discovery of Fetal Alcohol Syndrome
The term Fetal Alcohol Syndrome (FAS) was first published in 1973 in an article published in the British medical journal The Lancet. In that article, a group of pediatricians and psychiatrists at the University of Washington Medical School helped to define the morphological defects and developmental delays that can affect children born to alcoholic mothers. Those observations include pre- and post-natal growth deficiencies, minor facial abnormalities, and damage to the developing brain that can result in behavioral, learning, and cognitive abnormalities.
Format: Articles
Subject: Disorders, Reproduction
Effects of Prenatal Alcohol Exposure on Ocular Development
Maternal consumption of alcohol (ethanol) can result in a range of alcohol-induced developmental defects. In humans, those collective birth defects are called Fetal Alcohol Spectrum Disorders, with the most severe manifestation being Fetal Alcohol Syndrome (FAS). FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). The eye and ocular system development is particularly susceptible to the effects of prenatal alcohol exposure and can result in visual impairment or blindness.
Format: Articles
Subject: Disorders, Reproduction
Parasitic Twins
Parasitic twins, a specific type of conjoined twins, occurs when one twin ceases development during gestation and becomes vestigial to the fully formed dominant twin, called the autositic twin. The underdeveloped twin is called parasitic because it is only partially formed, is not functional, or is wholly dependent on the autositic twin.
Format: Articles
Subject: Disorders, Reproduction
Effects of Prenatal Alcohol Exposure on Cerebellum Development
Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading fetal alcohol spectrum disorders (FASD). Fetal alcohol syndrome (FAS) is the most severe combination of these defects under this heading, and is characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system (CNS).
Format: Articles
Subject: Disorders, Reproduction
Facial Abnormalities of Fetal Alcohol Syndrome (FAS)
Prenatal exposure to alcohol (ethanol) results in a continuum of physical, neurological, behavioral, and learning defects collectively grouped under the heading Fetal Alcohol Spectrum Disorder (FASD). Fetal Alcohol Syndrome (FAS) was first defined in 1973 as a condition characterized by pre- and postnatal growth deficiencies, facial abnormalities, and defects of the central nervous system. The pattern of facial defects that occur as a result of ethanol exposure during development primarily affects the midline of the face, altering morphology of the eyes, nose, and lips.
Format: Articles
Subject: Disorders, Reproduction
Karl Ernst von Baer (1792-1876)
Best known for his contributions to the field of embryology, Karl Ernst von Baer also pursued a variety of other areas of study including medicine, botany, zoology, and anthropology. Committing his life to scientific research, von Baer's work led to the advancement of the understanding of mammalian reproduction, development, and organ functioning. His embryological discoveries ultimately led him to a view of development that supported epigenesis and refuted long-held thinking about preformation.
Format: Articles
Subject: People
Franklin Paine Mall (1862-1917)
Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C.
Format: Articles
Subject: People
Wilhelm August Oscar Hertwig (1849-1922)
Wilhelm August Oscar Hertwig contributed to embryology through his studies of cells in development and his discovery that only one spermatozoon is necessary to fertilize an egg. He was born 21 April 1849 to Elise Trapp and Carl Hertwig in Hessen, Germany. After his brother Richard was born the family moved to Muhlhausen in Thuringen where the boys were educated. The two brothers later attended the university in Jena from 1868 to 1888 and studied under Ernst Haeckel, who later convinced Hertwig to leave chemistry and pursue medicine.
Format: Articles
Subject: People
California Proposition 71 (2004)
The California Stem Cell Research and Cures Act, also called Proposition 71, was a ballot
initiative proposed by California voters in 2004 to allocate three billion dollars of state
funds for stem cell research over ten years. Endorsed by California scientists and
patient-advocates, Prop 71 passed on 2 November 2004, amending the state constitution to make
stem cell research a constitutional right. In addition, Prop 71 led to the creation of the
California Institute for Regenerative Medicine (CIRM), in San Francisco, California to allocate
Format: Articles
Subject: Legal
The Role of the Notch signaling pathway in Somitogenesis
Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.
Format: Articles