Search

Displaying 1 - 25 of 74 items.

Pages

Elizabeth Blackburn, Carol Greider and Jack Szostak's Telomere and Telomerase Experiments (1982-1989)

Experiments conducted by Elizabeth Blackburn, Carol Greider, and Jack Szostak from 1982 to 1989 provided theories of how the ends of chromosomes, called telomeres, and the enzyme that repairs telomeres, called telomerase, worked. The experiments took place at the Sidney Farber Cancer Institute and at Harvard Medical School in Boston, Massachusetts, and at the University of California in Berkeley, California. For their research on telomeres and telomerase, Blackburn, Greider, and Szostak received the Nobel Prize in Physiology or Medicine in 2009.

Format: Articles

Subject: Experiments

Barbara McClintock's Transposon Experiments in Maize (1931–1951)

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes.

Format: Articles

Subject: Experiments

"In vitro Experiments on the Effects of Mouse Sarcomas 180 and 37 on the Spinal and Sympathetic Ganglia of the Chick Embryo" (1954), by Rita Levi-Montalcini, Viktor Hamburger, and Hertha Meyer

"In vitro Experiments on the Effects of Mouse Sarcomas 180 and 37 on the Spinal and Sympathetic Ganglia of the Chick Embryo" were experiments conducted by Rita Levi-Montalcini in conjunction with Viktor Hamburger and Hertha Meyer and published in Cancer Research in 1954. In this series of experiments, conducted at the University of Brazil, Levi-Montalcini demonstrated increased nerve growth by introducing specific tumors (sarcomas) to chick ganglia. Ganglia are clusters of nerve cells, from which nerve fibers emerge.

Format: Articles

Subject: Experiments

Induced Pluripotent Stem Cell Experiments by Kazutoshi Takahashi and Shinya Yamanaka in 2006 and 2007

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation.

Format: Articles

Subject: Experiments

David H. Hubel and Torsten N. Wiesel’s Research on Optical Development in Kittens

During 1964, David Hubel and Torsten Wiesel studied the short and long term effects of depriving kittens of vision in one eye. In their experiments, Wiesel and Hubel used kittens as models for human children. Hubel and Wiesel researched whether the impairment of vision in one eye could be repaired or not and whether such impairments would impact vision later on in life. The researchers sewed one eye of a kitten shut for varying periods of time.

Format: Articles

Subject: Experiments

Hermann Joseph Muller's Study of X-rays as a Mutagen, (1926-1927)

Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification".

Format: Articles

Subject: Experiments

"Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo" (1951), by Rita Levi-Montalcini and Viktor Hamburger

In "Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo," Rita Levi-Montalcini and Viktor Hamburger explored the effects of two nerve growth stimulating tumors; mouse sarcomas 180 and 37. This experiment led to the discovery that nerve growth factor was a diffusible chemical and later to discoveries that the compound was a protein. Although this paper was an important step in the discovery of nerve growth factor, the term "nerve growth factor" was not used in this paper.

Format: Articles

Subject: Experiments

Roger Sperry’s Split Brain Experiments (1959–1968)

In the 1950s and 1960s, Roger Sperry performed experiments on cats, monkeys, and humans to study functional differences between the two hemispheres of the brain in the United States. To do so he studied the corpus callosum, which is a large bundle of neurons that connects the two hemispheres of the brain. Sperry severed the corpus callosum in cats and monkeys to study the function of each side of the brain. He found that if hemispheres were not connected, they functioned independently of one another, which he called a split-brain.

Format: Articles

Subject: Experiments

"On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species" (1924), Hilde Mangold's Dissertation

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg.

Format: Articles

Subject: Experiments, Publications

Lysogenic Bacteria as an Experimental Model at the Pasteur Institute (1915-1965)

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists.

Format: Articles

Subject: Organisms, Experiments

Viktor Hamburger's Study of Central-Peripheral Relations in the Development of Nervous System

An important question throughout the history of embryology is whether the formation of a biological structure is predetermined or shaped by its environment. If both intrinsic and environmental controls occur, how exactly do the two processes coordinate in crafting specific forms and functions? When Viktor Hamburger started his PhD study in embryology in the 1920s, few neuroembryologists were investigating how the central neurons innervate peripheral organs.

Format: Articles

Subject: Experiments

The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the synthesis of B-galactosidase" (1959), by Arthur B. Pardee, Francois Jacob, and Jacques Monod

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria.

Format: Articles

Subject: Experiments

Calvin Bridges’ Experiments on Nondisjunction as Evidence for the Chromosome Theory of Heredity (1913-1916)

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes.

Format: Articles

Subject: Experiments, Publications

“Sex Limited Inheritance in Drosophila” (1910), by Thomas Hunt Morgan

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males.

Format: Articles

Subject: Experiments, Publications

"Genetic Control of Biochemical Reactions in Neurospora" (1941), by George W. Beadle and Edward L. Tatum

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes.

Format: Articles

Subject: Experiments

The inductive capacity of oral mesenchyme and its role in tooth development (1969-1970), by Edward J. Kollar and Grace R. Baird

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity.

Format: Articles

Subject: Experiments

Sonja Vernes, et al.'s Experiments On the Gene Networks Affected by the Foxp2 Protein (2011)

In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in the development of neurons, or nerve cells. Their results confirmed that Foxp2 affected the development of gene networks involved in the growth of neurons, as well as networks that are involved in cell specialization and cell communication.

Format: Articles

Subject: Experiments

Clinical Tests of Estrogen Injections on Women with Abnormal Menstrual Cycles During the Early 1920s by Jean Paul Pratt and Edgar Allen

In the early twentieth century US, Jean Paul Pratt and Edgar Allen conducted clinical experiments on women who had abnormal menstrual cycles. During the clinical tests, researchers injected the hormone estrogen into their patients to alleviate their menstrual ailments, which ranged from irregular cycles to natural menopause. The hormone estrogen plays a prominent role in the menstrual cycle by signaling the tissue lining the uterus (endometrium) to thicken in preparation for possible pregnancy.

Format: Articles

Subject: Experiments

Edgar Allen and Edward A. Doisy's Extraction of Estrogen from Ovarian Follicles, (1923)

In the early 1920s, researchers Edgar Allen and Edward Adelbert Doisy conducted an experiment that demonstrated that ovarian follicles, which produce eggs in mammals, also contain and produce what they called the primary ovarian hormone, later renamed estrogen. In their experiment, Doisy and Allen extracted estrogen from the ovarian follicles of hogs and proved that they had isolated estrogen by using a measurement later renamed the Allen-Doisy test.

Format: Articles

Subject: Experiments

China's First Baby Conceived through In Vitro Fertilization-Embryonic Transfer, by Zhang Lizhu's Research Team

On 10 March 1988, China's first baby conceived through human in vitro fertilization (IVF) and embryo transfer (ET), commonly referred to as a test-tube baby, was born at the Peking Hospital (PUTH) in Beijing. This birth was reported in numerous media reports as a huge step forward in China's long march to keep pace with global advances in science and technology. Led by gynecologist Zhang Lizhu, the PUTH research team had devoted more than four years to the human IVF-ET project.

Format: Articles

Subject: Experiments, Reproduction

Robert Geoffrey Edwards's Study of Fertilization of Human Oocytes Matured in vitro, 1965 to 1969

Robert Geoffrey Edwards, a British developmental biologist at University of Cambridge, began exploring human in vitro fertilization (IVF) as a way to treat infertility in 1960. After successfully overcoming the problem of making mammalian oocytes mature in vitro in 1965, Edwards began to experiment with fertilizing matured eggs in vitro. Collaborating with other researchers, Edwards eventually fertilized a human egg in vitro in 1969. This was a huge step towards establishing human IVF as a viable fertility treatment.

Format: Articles

Subject: Experiments, Reproduction

Robert Geoffrey Edwards's Study of in vitro Mammalian Oocyte Maturation, 1960 to 1965

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and timings for in vitro (out of the body) maturation of oocytes from diverse mammals including mice, rats, hamsters, pigs, cows, sheep, and rhesus monkeys, as well as humans.

Format: Articles

Subject: Experiments, Reproduction

"The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles" (1962), by John B. Gurdon

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types.

Format: Articles

Subject: Experiments

Harald zur Hausen's Experiments on Human Papillomavirus Causing Cervical Cancer (1976–1987)

From 1977 to 1987, Harald zur Hausen led a team of researchers across several institutions in Germany to investigate whether the human papillomavirus (HPV) caused cervical cancer. Zur Hausen's first experiment tested the hypothesis that HPV caused cervical cancer rather than herpes simplex virus type 2 (HSV-2), the then accepted cause. His second and third experiments detailed methods to identify two previously unidentified HPV strains, HPV 16 and HPV 18, in cervical cancer tumor samples. The experiments showed that HPV 16 and 18 DNA were present in cervical tumor samples.

Format: Articles

Subject: Experiments

"Presence of Fetal DNA in Maternal Plasma and Serum" (1997), by Dennis Lo, et al.

In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes.

Format: Articles

Subject: Experiments

Pages